
ASPL	Programming	ver	1.00
©	2024	Bassem	W.	Jamaleddine

	

ASPL,	A	Set	Programming	Languages,	is	a	setadic	calculator.	The	word	setadic	is	introduced	by
the	author	and	is	specifically	used	herein	to	refer	to	a	calculator	whose	symbolic	operators	are
termed	setadic	operators	and	all	of	which	perform	algebraic	set	operations	on	datasets.	These
operators	always	precede	their	operands.	

A	setadic	calculator,	is	a	software	appliance	that	takes	structured	data	objects	as	input	and
breaks	them	into	their	constituent	containment	pathes	so	that	they	can	be	analyzed	according	to
their	structural	components.	ASPL	maps	algebraic	data	groups	into	containment	pathes,	and	the
appliance	offers	setadic	operators	to	aggregate	and	to	determine	the	relationships	between	their
constituent	elements.	It	renders	them	into	a	form	suitable	to	be	comprehended	visually	by	the	user
before	displaying	their	relationships	on	the	user	terminal.	

Therefore,	ASPL	is	an	interactive	software	appliance	that	is	started	on	the	UNIX	shell	command
prompt.	Once	ASPL	is	installed	on	the	computer	system,	the	user	can	start	using	it	interactively	to
do	sophisticated	set	operations,	or	can	run	ASPL	scripts	on	the	system	where	ASPL	is	installed.
The	ASPL	interpreter	provides	a	powerful	and	intuitive	interactive	computing	facility	that	shares
some	similarities	to	a	classic	calculator.	However,	ASPL	operators	are	set	operators,	and	its
variables	are	set	variables.	For	the	operator	using	ASPL,	all	variables	are	typeless	and	the
commands	are	short	and	simple	mnemonics	that	are	easy	to	remember.	ASPL	does	not	require	a
database	or	any	third	party	libraries.	The	program	runs	on	UNIX	systems	where	the	standard	Perl
interpreter	is	available.	

Your	ASPL	interpreter	can	perform	a	large	number	of	sophisticated	set	operations	using	the
preprogrammed	set	operators.	The	calculation	results	may	then	be	assigned	to	variables	called	set
variables.	The	set	variables	are	presented	as	arguments	to	set	operators	to	do	further	calculations.
In	addition,	when	you	start	the	ASPL	interpreter	you	are	assigned	a	named	workspace.	It	is	this
named	workspace	that	is	used	by	the	ASPL	instance	you	started	to	save	the	results	and	the
variables	of	all	your	calculations.	ASPL	uses	a	stack	to	save	the	results	performed	by	its
operations,	and	save	the	variables	in	internal	symbol	tables.	ASPL	variables	are	all	global
variables,	and	when	persistence	is	enabled	these	global	variables	are	all	shared	by	users
connecting	to	the	same	workspace;	in	which	case	if	two	or	more	ASPL	instances	are	started	with
the	same	named	workspace	then	all	variables	are	being	shared	globally	by	all	ASPL	instances.
The	workspace	directory	should	be	available	to	all	instances.	

ASPL	path	containment	can	span	multiple	groups	and	subgroups	along	their	elements.	The
following	figure	shows	groups,	subgroups,	and	their	elements.	There	are	three	groups	labeled	g1,
g2,	and	g3.	

							Note:	ASPL	groups	image	to	be	further	explained	in	next	Chapter	using	RANDONEBIT
workspace	

full	view

	-F-	Fig.	1.1.1			[THREE	GROUPS,	THEIR	SUBGROUPS,	AND	THEIR	ELEMENTS]
[This	figure	shows	three	groups	labeled	g1,	g2,	and	g3.	Each	group	may	contain

1-1 			Introduction	to	ASPL

file:///public/ASPLv1man/asplmanualv1r/img/group123a.gif

one	or	more	subgroups	or	subsets.	The	elements	within	the	groups	and	their
subgroups	are	marked	with	black	dots.]
ASPL	©	2024	by	Bassem	W.	Jamaleddine

The	labeled	groups	can	be	assigned	to	ASPL	variables.	For	instance,	v1,	v2,	and	v3	are	three
ASPL	variables	that	represent	the	groups	g1,	g2,	and	g3	respectively.	ASPL	setadic	operators	can
then	perform	set	operations	on	these	variables.	For	instance	to	get	the	set	union	of	all	three
groups:	gU	v1	v2	v3,	to	get	their	set	intersection:	g&	v1	v2	v3,	to	get	their	set	difference:	g\	v1	v2
v3,	and	to	get	their	set	partitions:	gP	v1	v2	v3.	

Notice	the	mnemonic	of	these	four	basic	set	operators:	gU,	g&,	g\,	and	gP	in	which	the	first	letter	is
a	lower	case	'g'	depicting	the	subject	of	on	which	the	operation	will	take	place,	and	the	second
letter	(either	one	of	U,	&,	\,	and	P)	depicting	the	operation	type.	These	four	operators	do	the
following	operations,	respectively:

Instruction						Operation
-----------				-------------------------
gU	v1	v2	v3				get	the	group	union	considering	the	subrgoups	and	elements
g&	v1	v2	v3				get	the	group	intersection	considering	the	subrgoups	and	elements
g\	v1	v2	v3				get	the	group	difference	considering	the	subrgoups	and	elements
gP	v1	v2	v3				partition	the	groups,	subgroups,	and	their	elements

In	a	functional	way	these	operations	can	also	be	further	explained:

Instruction						Operation
-----------				-------------------------
gU	v1	v2	v3				Union(v1,	Union(v2,v3))
g&	v1	v2	v3				Intersection(v1,	Intersection(v1,v2))
g\	v1	v2	v3				Difference(v1,	Difference(v2,v3)
gP	v1	v2	v3				Partition(v1,v2,v3)

The	subject	denoted	with	the	'g'	is	to	consider	both	the	subgroups	and	elements	in	their	respective
groups.	However,	if	the	subject	is	only	to	do	the	operations	on	the	subgroups	then	one	can	use	dU,
d&,	d\	and	dP.	Therefore	to	get	the	set	union	of	the	subgroups	only	of	all	the	three	groups:	dU	v1
v2	v3,	to	get	their	set	intersection:	d&	v1	v2	v3,	to	get	their	set	difference:	d\	v1	v2	v3,	and	to	get
their	set	partitions:	dP	v1	v2	v3.	

One	can	look	into	the	elements	of	the	groups	only	(excluding	the	subgroups)	by	using	fU,	f&,	f\	and
fP.	Therefore	to	get	the	set	union	of	the	elements	only	of	all	three	groups:	fU	v1	v2	v3,	to	get	their
set	intersection:	f&	v1	v2	v3,	to	get	their	set	difference:	f\	v1	v2	v3,	and	to	get	their	set	partitions:
fP	v1	v2	v3.	

For	ASPL	this	is	done	through	its	set	builder	and	the	setadic	operation.	For	example,	the
intersection	of	the	elements	found	in	v1,	v2,	and	v3,	denoted	with	f&	v1	v2	v3	is	to	parse	(or
humanly	read)	the	information	left	to	right:	the	set	operator	comes	first	(hence	the	meaning	of
setadic	operator)	then	followed	by	the	identifiers	(representing	the	labeled	groups	or	datasets).
This	is	something	that	the	reader	is	accustomed	to	from	basic	schooling,	and	can	be	seen	through
ASPL	setbuilder	by	typing	setbuilder	gU	v1	v2	v3	at	the	ASPL	prompt:	

aspl>	setbuilder	gU	v1	v2	v3

		QUOTIENT	SET	BUILDER

			{gU	v1	v2	v3}	<=>		gU			v1			v2			v3	

		Detailed	view:

			{gU	v1	v2	v3}	<=>

				gU			v1			v2			v3	
					|			|				|				+---->	set-variable
					|			|				+--------->	set-variable
					|			+-------------->	set-variable
					+------------------>	get	the	subgroups	and	the	elements	union

		Set	builder	syntax	is	read	from	left	to	right,	or	from	bottom	to	top.
		All	ASPL	setops	are	setadic:	they	take	a	setop	followed	by	set	variables.

As	for	the	intersection,	one	can	type	setbuilder	g&	v1	v2	v3	at	the	ASPL	prompt:	

aspl>	setbuilder	g&	v1	v2	v3

		QUOTIENT	SET	BUILDER

			{g&	v1	v2	v3}	<=>		g&			v1			v2			v3	

		Detailed	view:

			{g&	v1	v2	v3}	<=>

				g&			v1			v2			v3	
					|			|				|				+---->	set-variable
					|			|				+--------->	set-variable
					|			+-------------->	set-variable
					+------------------>	get	the	subgroups	and	the	elements	intersection

		Set	builder	syntax	is	read	from	left	to	right,	or	from	bottom	to	top.
		All	ASPL	setops	are	setadic:	they	take	a	setop	followed	by	set	variables.

Each	element	within	a	group	or	subgroup	can	be	further	described	and	characterized	by	a	set	of
attributes	that	are	attached	to	it,	and	comparing	it	to	another	element	is	therefore	based	on	these
attributes.	In	ASPL	every	element	has	a	checksum	attribute,	and	the	language	provides	a	feature
to	subordinate	setadic	operators	with	a	conditional	predicate.	Repeating	the	previous	operation	g&
v1	v2	v3	but	we	want	to	get	only	these	subgroups	and	elements	that	have	different	checksums:
setbuilder	g&`c	v1	v2	v3	

aspl>	setbuilder	g&`c~	v1	v2	v3

		QUOTIENT	SET	BUILDER

			{g&`c~		v1	v2	v3}	<=>		g&`c~		v1			v2			v3	

		Detailed	view:

			{g&`c~		v1	v2	v3}	<=>

				g&	`	c~		v1			v2			v3	
					|	|		|			|				|				+---->	set-variable
					|	|		|			|				+--------->	set-variable
					|	|		|			+-------------->	set-variable
					|	|		+------------------>	have	different	checksums
					|	+--------------------->	such	that
					+----------------------->	get	the	subgroups	and	the	elements	intersection

Here	we	used	the	acute	backtick	`	followed	by	a	predicate.	ASPL	refers	to	this	backtick	simply	with
the	word	'tick'	and	many	of	ASPL	set	operators	can	be	ticked	with	specific	predicates.	For
example,	in	the	above	example	the	operator	is	ticked	with	the	predicate	saying	"when	checksums
are	differents"	g&`c~.	
In	general,	we	are	also	accustomed	to	the	forward	slash,	called	a	stroke	or	the	solidus	symbol	/,
that	may	follow	a	set	operator	to	depict	a	quotient	relation,	and	in	ASPL	this	is	called	stroking	a	set
operator.	In	the	following	example,	the	group	intersection	operator	(g&)	is	being	stroked	with	the
quotient	relation	r3.	Notice	that	the	stroke	is	directly	followed	by	a	tilde	then	the	relation	r3.	r3	has
been	defined	by	the	user	but	expanded	here	as	frx=.*$,mtm~	(that	is	saying	to	match	the	elements
with	regular	expression	.*$	and	whose	mtime	attribute	differ).	

aspl>	setbuilder	g&/~r3		v1	v2	v3

		QUOTIENT	SET	BUILDER

			{g&/~r3		v1	v2	v3}	<=>		g&/frx=.*$,mtm~		v1			v2			v3	

		Detailed	view:

			{g&/~r3		v1	v2	v3}	<=>

				g&	/	frx=.*$,mtm~		v1			v2			v3	
					|	|				|						|				|				|				+---->	set-variable
					|	|				|						|				|				+--------->	set-variable
					|	|				|						|				+-------------->	set-variable
					|	|				|						+------------------->	have	different	make	times
					|	|				+-------------------------->	file	name	regular	expression
					|	+------------------------------->	stroking	the	Quotient	Relation
					+--------------------------------->	get	the	subgroups	and	the	elements	intersection

The	definition	of	r3	was	performed	with	the	command	shown	below	and	at	any	time	the	user	can
type	q	to	display	the	quotient	relation	table:

			aspl>	q	r3	:=	frx=.*$,mtm~
			aspl>	q	

		Coded	QR
								qr																|user										|code
								------------------|--------------|------------------------------------
								r3																|(1)root							|frx=.*$,mtm~

This	is	equivalent	to	typing	g&`mtm~	v1	v2	v3	and	in	this	particular	case	all	the	following	three
commands	are	equivalent:	

aspl>	g&/~r3		v1	v2	v3
aspl>	g&/frx=.*$,mtm~		v1			v2			v3
aspl>	g&`mtm~		v1			v2			v3

In	this	book	the	ASPL	prompt	is	denoted	with	aspl>	and	the	UNIX	shell	prompt	is	represented
with	the	hash	#	symbol.

See	appendix	AAAAA	on	how	to	install	ASPL	on	your	UNIX	system.

■	ASPL	Building	Blocks

							Note:	ASPL	Startup	TRIVIAL	ASPLv1.00-startup-trivial.png	

full	view

	-F-	Fig.	1.1.2			[ASPL	Startup	TRIVIAL][ASPL	Starting	with	TRIVIAL	workspace]
ASPL	©	2024	by	Bassem	W.	Jamaleddine

(*	footnote:	An	interpreter	typically	has	it	own	virtual	machine,	but	ASPL	does	not.	The	ASPL
interpreter	is	built	on	top	of	pure	Perl	interpreter	and	it	uses	the	Perl	powerful	virtual	machine	in
executing	its	tasks.)

The	TRIVIAL	workspace	is	available	with	every	ASPL	distribution,	and	its	grouping	class	is	the
ZEROGROUP	which	contains	the	bare	information	that	is	required	by	any	grouping	class	in	ASPL.
The	command	wid	displays	the	current	workspace	being	loaded	and	its	up	time,	and	the	command
egCwhoami	pings	its	grouping	class	container.	Both	commands	are	shown	in	Figure	FFFFF.

							Note:	ASPL	Startup	TRIVIAL	ASPLv1.00-startup-trivial.png	

full	view

file:///public/ASPLv1man/asplmanualv1r/img/ASPLv1.00-startup-trivial.png
file:///public/ASPLv1man/asplmanualv1r/img/ASPLv1.00-startup-trivial-img0.png

	-F-	Fig.	1.1.3			[ASPL	Startup	TRIVIAL][ASPL	Starting	with	TRIVIAL	workspace]
ASPL	©	2024	by	Bassem	W.	Jamaleddine

ASPL	has	eight	major	components:

the	syntax	factory
the	set	semantic	processor
the	verbs	transformer	and	dispatcher
the	set	accumulator
the	set	algorithmic	processor
the	dynamically	loadable	container	for	the	grouping	classes
the	dynamically	loadable	container	for	generative	functions
the	workspace	manager	for	symbols	and	sessions	management

These	are	shown	in	Figure	FFFFF,	and	are	also	reflected	in	ASPL	layout	directories	shown	in
Figure	FFFFF.

							Note:	ASPL	building	blocks	image	aspl-block-old.png	

full	view

file:///public/ASPLv1man/asplmanualv1r/img/aspl-block-old.png

	-F-	Fig.	1.1.4			[ASPL	BLOCK][ASPL	Internal	Building	Blocks]
ASPL	©	2024	by	Bassem	W.	Jamaleddine

							[Top	Text]	

	-L-	Listing.	1.1.1			[ASPLv1.00	Directory	Tree	ASPL-tree0.dir.numl][ASPLv1.00
Directory	Tree]

(raw	text)

1.												ASPLv1.00
2.												|--	bin
3.												|--	BRIDGE
4.												|			|--	ASPL
5.												|			|			|--	BAYLEVELGROUP
6.												|			|			|			`--	Feeder
7.												|			|			|--	EmStatv2
8.												|			|			|			`--	Cexec
9.												|			|			|--	EmVectors
10.											|			|			|--	Formattings
11.											|			|			|--	GGs
12.											|			|			|			|--	GEO3TRI
13.											|			|			|			|			`--	CTXSETOP
14.											|			|			|			|--	OSCILLATORSGROUP
15.											|			|			|			|			`--	Feeder
16.											|			|			|			`--	SYSENVGROUP
17.											|			|			|							`--	Feeder
18.											|			|			|--	Groupings
19.											|			|			|			|--	Elements
20.											|			|			|			|			|--	ONEGROUP
21.											|			|			|			|			`--	ZEROGROUP
22.											|			|			|			|--	Helper
23.											|			|			|			`--	stubs
24.											|			|			`--	MockedGroupings
25.											|			|							`--	MockedObjects
26.											|			`--	bin
27.											|--	etc
28.											|--	lib
29.											|			|--	ASPL
30.											|			|			|--	ASPLSNTX
31.											|			|			|--	Directory
32.											|			|			|			`--	DDM
33.											|			|			|--	DISPLAY
34.											|			|			|--	MemUsage
35.											|			|			|--	PRIMITIVES
36.											|			|			|--	SETACCUMULATOR
37.											|			|			|--	SOPALGO
38.											|			|			|--	SOPVERBS
39.											|			|			|--	SOPX
40.											|			|			|--	SYMBOPS

file:///public/ASPLv1man/asplmanualv1r/misc/ASPL-tree0.dir.numl.txt

41.											|			|			|			`--	FTX_VERBPROCESSORS_BUILDER
42.											|			|			`--	Utilities
43.											|			`--	Simple
44.											|--	license
45.											`--	shared
46.											

ASPL	©	2024	by	Bassem	Jamaleddine

							[Top	Text]	

	-L-	Listing.	1.1.2			[ASPLv1.00	Directory	Tree	ASPL-tree0.dir.numl][ASPLv1.00
Directory	Tree]

(raw	text)

1.												ASPLv1.00
2.												|--	bin
3.												|--	BRIDGE
4.												|			|--	ASPL
5.												|			|			|--	BAYLEVELGROUP
6.												|			|			|			`--	Feeder
7.												|			|			|--	EmStatv2
8.												|			|			|			`--	Cexec
9.												|			|			|--	EmVectors
10.											|			|			|--	Formattings
11.											|			|			|--	GGs
12.											|			|			|			|--	GEO3TRI
13.											|			|			|			|			`--	CTXSETOP
14.											|			|			|			|--	OSCILLATORSGROUP
15.											|			|			|			|			`--	Feeder
16.											|			|			|			`--	SYSENVGROUP
17.											|			|			|							`--	Feeder
18.											|			|			|--	Groupings
19.											|			|			|			|--	Elements
20.											|			|			|			|			|--	ONEGROUP
21.											|			|			|			|			`--	ZEROGROUP
22.											|			|			|			|--	Helper
23.											|			|			|			`--	stubs
24.											|			|			`--	MockedGroupings
25.											|			|							`--	MockedObjects
26.											|			`--	bin
27.											|--	etc
28.											|--	lib
29.											|			|--	ASPL
30.											|			|			|--	ASPLSNTX
31.											|			|			|--	Directory
32.											|			|			|			`--	DDM
33.											|			|			|--	DISPLAY
34.											|			|			|--	MemUsage
35.											|			|			|--	PRIMITIVES
36.											|			|			|--	SETACCUMULATOR
37.											|			|			|--	SOPALGO
38.											|			|			|--	SOPVERBS
39.											|			|			|--	SOPX
40.											|			|			|--	SYMBOPS
41.											|			|			|			`--	FTX_VERBPROCESSORS_BUILDER
42.											|			|			`--	Utilities
43.											|			`--	Simple
44.											|--	license
45.											`--	shared
46.											

ASPL	©	2024	by	Bassem	Jamaleddine

Starting	ASPL	in	verbose	mode	will	also	reflect	where	ASPL	loads	its	components	at	startup	as
shown	in	Figure	FFFFF.

							ASPL	Startup	on	the	UNIX	Shell	Prompt	Explained	

full	view

file:///public/ASPLv1man/asplmanualv1r/misc/ASPL-tree0.dir.numl.txt
file:///public/ASPLv1man/asplmanualv1r/img/aspl-startup-1a.png

	-F-	Fig.	1.1.5			[ASPL	Startup	on	the	UNIX	Shell	Prompt	Explained]
ASPL	©	2024	by	Bassem	Jamaleddine

A	user	interacting	with	ASPL	places	a	setadic	operation	to	the	interpreter.	The	interpreter	submits
it	to	the	syntax	factory,	analyzes	it,	builds	its	object,	and	locates	its	verb.	It	then	dispatches	the
object	to	its	algorithmic	set	processing	agent	after	fetching	its	symbols	from	either	the	answer
stack	or	the	symbol	table.	The	result	of	the	processed	expression	is	finally	saved	in	the	symbol
table,	pushed	on	the	top	of	the	stack,	and	displayed	on	the	terminal.	The	simplest	way	to	see	the
flow	of	ASPL	processing	is	to	enable	the	tracing	facility	of	ASPL	(see	Appendix	CCCCC).

	

■	ASPL	Commands	with	asplcmd

At	this	point	we	introduce	the	asplcmd	command	because	it	is	a	quick	way	to	execute	short	ASPL
statements	through	the	UNIX	shell	prompt.	

You	can	direct	ASPL	to	execute	some	of	its	statements	by	issuing	asplcmd	at	the	shell	prompt
followed	by	a	a	string.	If	the	string	is	more	than	a	word	then	it	must	be	quoted	since	it	is	passed
like	a	single	argument	to	asplcmd.	Without	going	into	details	on	how	asplcmd	works,	as	this	will
become	clear	after	reading	the	chapter	"ASPL	Scripts",	it	is	used	here	to	facilitate	some
explanation	on	ASPL	displayable	output.	

The	following	command	compares	the	datasets	saved	in	the	variable	mg123	of	workspace
RANDONEBITMIX.

#		asplcmd	'load	RANDONEBITMIX;gU	mg123'

This	command	causes	ASPL	to	load	the	workspace	RANDONEBITMIX,	then	issues	the	gU	to
display	the	group	unions	found	in	the	datasets	saved	in	the	variable	mg123.	The	semicolon	is	used
to	separate	the	two	statements.	Observe	the	output	showing	the	groups,	subgroups,	and	elements.
The	next	section	explains	the	symbolic	schemes	and	colors	used	by	ASPL	when	displaying	its
output.	

The	following	command	compares	two	variables	a2	and	a7	that	has	been	saved	in	workspace
WS1.

#		asplcmd	'load	WS1;	ks	mtime	chksum	ppdd;	gU	a2	a7'

There	are	three	statements	separated	by	semicolons	in	this	string	passed	to	ASPL.	The	first
statement	load	the	workspace	WS1,	the	second	statement	set	the	ks	attribute	vector	to	mtime

chksum	ppdd,	and	the	third	statement	display	the	group	union	of	the	datasets	saved	in	a2	and	a7.	

When	you	pass	a	string	to	asplcmd	the	interpreter	will	parse	the	string	and	execute	its	contents
then	exit.	

	

■	ASPL	Symbolic	Shemes	and	Colors

ASPL	is	not	a	GUI	application	and	does	not	require	any	GUI	API,	it	uses	plain	ASCII	characters	for
its	symbolic	operators	and	identifiers,	and	uses	the	ANSI	colors	scheme	provided	by	the	UNIX
terminal.	(*	footnote:	APL	users	should	be	alarmed	as	there	is	no	APL	Greek	symbols	in	here!)	At
any	time	you	can	start	ASPL	at	the	UNIX	shell	prompt	of	a	terminal	(or	even	on	a	dumb	terminal)
or	an	X	Window	session.	Figure	FFFFF-1	shows	ASPL	started	in	a	KDE	session.	

Because	the	set	comparison	operators	classify	data	into	three	basic	categories:	intersection,
union,	and	difference,	then	it	is	recommended	to	display	the	output	using	three	different	colors.	In
addition,	since	a	group	may	contain	subgroups	and	elements,	then	some	symbolic	scheme	is
needed	to	show	the	group	differences	along	these	colors.	ASPL	uses	both	colors	and	symbolic
schemes	to	facilitate	the	readability	of	its	output.	Using	the	ANSI	colors	that	is	readily	available	on
all	UNIX	terminal,	and	compounding	it	with	symbolic	schemes	will	help	to	distinguish	when
subgroups	and	elements	are	unique,	equal,	or	different.	

Figure	FFFF	shows	the	partial	result	of	the	command	discussed	in	the	previous	section:

#		asplcmd	'load	RANDONEBITMIX;gU	mg123'

Recall	that	there	is	no	restriction	on	the	name	of	subgroups	and	elements,	that	is	an	element	name
can	be	the	subgroup	name	in	another	group,	and	even	can	be	the	subgroup	name	in	the	same
group	(as	long	as	it	is	at	different	level).	This	is	similar	to	the	UNIX	filesystem	where	in	the	same
directory	you	cannot	have	a	directory	and	a	file	using	the	same	name.	

To	understand	the	meaning	of	ASPL	colors	and	symbolic	schemes	let's	go	over	figure	FFFF	where
the	output	has	been	labeled	at	five	points	as	follow:

①				gU:	f!=)	this	is	the	gU	of	g1	g2	g3	where	a	difference	in	the	element	has	been	detected:	it	is	the
subgroup	df2	that	was	detected	in	the	subgroup	./df2/df1	

②				gU:	+f)	element	df3	only	in	subgroup	./df2/df1/	in	group	g3

③				gU:	d!=)	subgroup	df2	in	subgroup	./df2/	in	all	groups	g1	g2	and	g3	but	they	differ

④				gU:	f==)	element	df1	in	subgroup	./df2/df2/	in	all	groups	g1	g2	and	g3	and	is	the	same

⑤				gU:	g!=)	mixed	as	df3	is	./df2/	is	subgroup	in	groups	g1	g2	and	it	is	an	element	in	group	g3

Notice	also	the	colors:	equality	shown	in	green,	difference	shown	in	red,	and	a	loner	shown	in
gray.	

							Note:	ASPL	Symbolic	Shemes	and	Colors	g1g2g3-12345.png	

full	view

	-F-	Fig.	1.1.6			[SYMBOLIC	SHEMES	AND	COLORS][ASPL	Symbolic	Shemes	and
Colors]

file:///public/ASPLv1man/asplmanualv1r/img/g1g2g3-12345.png

ASPL	©	2024	by	Bassem	W.	Jamaleddine

This	example	might	be	confusing,	but	it	was	selected	on	purporse	to	make	it	clear	that	the	label
names	of	subgroups	and	elements	are	immaterial	to	ASPL	algorithmic	routines.	

Let's	take	a	look	at	another	practical	example	where	a	file	name	and	a	directory	name	might
intersect	on	the	UNIX	filesystem.	Assuming	you	have	access	to	the	/tmp	directory,	issue	the
following	commands	on	your	shell	prompt:	

#		mkdir	/tmp/foodir1

#		mkdir	/tmp/foodir1/abc

#		mkdir	/tmp/foodir2

#		touch	/tmp/foodir2/abc

#		asplcmd	"createworkspace	TRANSIENT	POSIX;ggdir(dir,/tmp/foodir1);ggdir(dir,/tmp/foodir2);gU"

The	first	two	commands	create	a	directory	and	a	subdirectory	/tmp/foodir1	and	/tmp/foodir1/abc
respectively,	and	the	next	two	commands	create	a	directory	and	a	file	/tmp/foodir2	and
/tmp/foodir2/abc	respectively.	The	last	command	call	ASPL	to	show	the	difference	between	the	two
directories	/tmp/foodir1	and	/tmp/foodir2.	

The	statement	createworkspace	TRANSIENT	POSIX	tells	ASPL	to	load	the	temporary
TRANSIENT	workspace	with	element	grouping	class	POSIX.	The	next	statement
ggdir(dir,/tmp/foodir1)	tells	ASPL	to	call	the	grouping	function	ggdir()	on	directory	/tmp/foodir1.
These	statements	will	become	clearer	in	the	next	chapters.	For	now,	if	you	have	issued	these
command	succeffully	then	you	are	already	using	ASPL.	

The	result	of	comparing	the	comparing	the	directories	is	shown	below:								Note:	Example
comparing	a	file	and	a	subdirectory	that	have	the	same	name	foodir-commented.png	

full	view

	-F-	Fig.	1.1.7			[Example	comparing	a	file	and	a	subdirectory	that	have	the	same
name]
ASPL	©	2024	by	Bassem	W.	Jamaleddine

Appendix	DDDD	shows	a	summary	of	ASPL	symbolic	schemes	and	how	the	user	can	edit	the
color	configuration	settings.

	

■	Why	do	you	need	to	use	ASPL

There	are	myriad	reasons	why	you	need	to	use	the	ASPL	interpreter:	to	detect	and	highlight
changes	of	systemic	data	in	a	UNIX	cloud	environment,	to	validate	configuration	data	in	a	UNIX
cluster,	to	resolve	collision	of	class	names	in	JAR	archives,	to	compare	analogous	PATH	across
systems,	etc.	The	following	figure	shows	the	result	of	a	UNIX	system	whose	socket	has	changed
states:

							Figure	monitor-socket-state.png	

full	view

file:///public/ASPLv1man/asplmanualv1r/img/foodir-commented.png
file:///public/ASPLv1man/asplmanualv1r/img/monitor-socket-state.png

	-F-	Fig.	1.1.8			[Figure	Monitoring	UNIX	System	Socket	State]
ASPL	©	2024	by	Bassem	Jamaleddine

Furthermore	one	can	use	ASPL	to	do	simulation	of	players	throwing	dice	on	a	crap	table.	Figure
FFFFF	shows	the	result	of	the	simulation	of	players	tossing	dice:	find	the	event	when	all	the	three
players	have	the	same	outcome.

							Figure	randomdice.aspl-900.png	

full	view

	-F-	Fig.	1.1.9			[Figure	Simulation	for	Three	Players	Throwing	Dice]
ASPL	©	2024	by	Bassem	Jamaleddine

ASPL	can	also	treats	DNA	sequences	as	datasets	and	you	can	toy	with	these	sequences	through
its	alignment	algorithms.	Figure	FFFFF	shows	a	mutant	when	altering	the	sequence	randomly,	and
figure	FFFFF	show	the	DNA	sequence	alignment	of	two	men.

							Figure	mutant.aspl-img1.png	

file:///public/ASPLv1man/asplmanualv1r/img/randomdice.aspl-900.png

full	view

	-F-	Fig.	1.1.10			[Figure	DNA	Sequence	for	Mutant]
ASPL	©	2024	by	Bassem	Jamaleddine

							Figure	mutant.aspl-img.png	

full	view

	-F-	Fig.	1.1.11			[Figure	DNA	Sequence	of	Two	Men]
ASPL	©	2024	by	Bassem	Jamaleddine

The	elements	of	a	group	do	not	need	to	be	the	usual	static	data,	as	an	element	attributes	can	be
renewed	when	hooked	to	processes	or	tied	to	devices	in	a	system	that	may	change	states.	We	will
see	some	examples	in	"ASPL	by	Examples"	where	the	OSCILLATORGROUP	defines	attributes
that	are	tied	to	a	device	to	collect	data	set;	and	another	example	using	the	BAYLEVELGROUP

file:///public/ASPLv1man/asplmanualv1r/img/mutant.aspl-img1.png
file:///public/ASPLv1man/asplmanualv1r/img/mutant.aspl-img.png

whose	attributes	are	tied	to	sensors	monitoring	the	water	level	between	two	bays.	Figure	FFFFF
shows	a	simulation	when	the	water	level	between	the	two	bays	is	critical.

							BAYS12MON-img0.png	

full	view

	-F-	Fig.	1.1.12			[Figure	Monitoring	the	Water	Level	Between	Two	Bays]
ASPL	©	2024	by	Bassem	Jamaleddine

ASPL	can	do	fuzzy	set	operations,	these	are	simple	operators	like	y&,	yU,	and	y\	to	get	the	fuzzy
intersection,	union,	and	difference	respectively.

With	its	powerful	regular	expression	processor,	ASPL	can	do	shallow	set	operations.	Just	type
shallowed	and	you	select	the	shallow	matching	that	you	desire.

A	quick	view	of	the	shallow	table	module	is	shown	below.

aspl:1	>	shallowed

		THE	SHALLOW	MATCHING	IDENTIFIER	TO	SELECT	THE	ROUTINE	WHEN	SHALLOW	SETOPS	ARE	USED:

																		IDENTIFIER		DESCRIPTION																																																									
																		----------		-----------																																																									
																					nothing		matching	nothing	at	all																																													
																				starstar		matching	anything	and	everything																																				
															matchandmatch		matching	the	./subgroups	and	the	element																												
																matchormatch		matching	the	./subgroups	or	the	element																													
																								elem		matching	just	the	element	and	ignoring	./subgroups																		
																								stem		matching	just	the	./subgroups	and	ignoring	the	element														
													endjoinedeither		matching	from	end	of	./subgroups/element	for	either																	
													begjoinedeither		matching	the	beginning	of	./subgroups/element	for	either												
																					endstem		matching	just	the	./subgroups	from	the	end	and	ignoring	the	element	
															endstemeither		matching	just	the	./subgroups	from	the	end	and	ignoring	the	element	(for	either)
																					begstem		matching	from	beginning	of	./subgroups	while	ignoring	the	element			
															begstemeither		matching	from	beginning	of	./subgroups	while	ignoring	the	element	(for	either)
																		piecedstem		matching	at	least	one	piece	in	./subgroups	while	ignoring	the	element
			>										piecedstemelem		matching	the	element	and	at	least	one	piece	in	the	./subgroups						
																					begelem		matching	from	the	beginning	of	element	and	ignoring	./subgroups	(for	either)
																					endelem		matching	from	the	end	of	element	and	ignoring	./subgroups	(for	either)
																					rgxelem		matching	the	element	anywhere	and	ignoring	./subgroups	(for	either)	
																				prcrelem		apply	processor	when	matching	the	element	anywhere	and	ignoring	./subgroups	(for	either)

file:///public/ASPLv1man/asplmanualv1r/img/BAYS12MON-img0.png

			CURRENTLY	LOADED	piecedstemelem

		WHEN	SELECTING	prcrelem	AS	THE	SHALLOW	MATCHING	IDENTIFIER,	ONE	OF	THE	FOLLOWING
		NODE	PROCESSOR	IDENTIFIER	CAN	BE	SELECTED:

																		IDENTIFIER	EVAL		DESCRIPTION																																																									
																		----------	----		-----------																																																									
																					transac				1		capture	the	element	where	word	Transaction	occured,	ignore	case					
																						cla2ja				1		substitute	.class	with	.java																																								
																						ja2cla				1		substitute	.java	with	.class																																								
																										uc				1		upper	case																																																										
																										lc				1		lower	case																																																										
			>																				asis				1		neutral	without	any	change																																										

			CURRENTLY	LOADED	PROCESSOR	asis

THE	shallowedMatches	PACKAGE	CAN	BE	EDITED	TO	ADD	MORE	MATCHING	SUBROUTINES.
SEE	ASPL	CONFIGURATION	FILES	FOR	MORE	ABOUT	EDITING	shallowedMatches	PACKAGE.

Moreover	ASPL	can	switch	its	set	operation	mode	to	do	geometric	set	operations	so	that	you	can
detect	intersecting	polygons	in	2D	planes	or	on	spheres.

Figure	FFFFF	shows	the	intersecting	polygons	in	two	planes.	The	intersecting	polygons	are
contrasted	by	showing	their	vertex	in	squares.

P12_90-both-and-intersect-img2.png

							Figure	P12_90-both-and-intersect-img2.png	

full	view

	-F-	Fig.	1.1.13			[Figure	ASPL	GEO-INTERSECTION	FOR	RANDOM	TRIANGLES
WITH	HIGHLIGHTED	OVERLAPPING	TRIANGLES	IN	THE	TWO	2D	PLANES]
ASPL	©	2024	by	Bassem	Jamaleddine

P12_90-both-and-intersect-img1.png

PUBLISHER	VERSION	USING	SQUARE	POINTS	FOR	BLACK	AND	WHITE	PRINT

							Figure	P12_90-both-and-intersect-img1.png	

full	view

file:///public/ASPLv1man/asplmanualv1r/img/P12_90-both-and-intersect-img2.png
file:///public/ASPLv1man/asplmanualv1r/img/P12_90-both-and-intersect-img1.png

	-F-	Fig.	1.1.14			[Figure	ASPL	GEO-INTERSECTION	CONTRASTED	WITH	SQUARE
POINTS	FOR	THE	RANDOM	TRIANGLES	OVERLAPPING	IN	THE	TWO	2D
PLANES]
ASPL	©	2024	by	Bassem	Jamaleddine

Figure	FFFFF	shows	the	intersecting	polygons	on	two	spheres,	and	figure	FFFF	shows	the
intersects	and	differences	between	these	polygons.

G12_170-all-with-intersect-img3D.png

							Figure	G12_170-all-with-intersect-img3D.png	

full	view

	-F-	Fig.	1.1.15			[Figure	RANDOM	POLYGONS	OVERLAPPING	ON	TWO	SPHERES
IN	3D	SPACE]
ASPL	©	2024	by	Bassem	Jamaleddine

file:///public/ASPLv1man/asplmanualv1r/img/G12_170-all-with-intersect-img3D.png

Refer	to	WARN:	IN	Introduction-to-ASPL.raw	THE	FOLLOWING	Ref:	CANNOT	BE
RESOLVED
			<Ref:-see	section	-chaptit	"RANDOM	POLYGONS	ON	THREE	SPHERES"	-ptt
"RANDOM	POLYGONS	ON	THREE	SPHERES"	/>

G12_170-both-all-img3D.png

							Figure	G12_170-both-all-img3D.png	

full	view

	-F-	Fig.	1.1.16			[Figure	RANDOM	POLYGONS	OVERLAPPING	ON	TWO	SPHERES
IN	3D	SPACE	WITH	ASPL	GEO-INTERSECTIONS	GEO-DIFFERENCE]
ASPL	©	2024	by	Bassem	Jamaleddine

Many	of	these	examples	are	detailed	in	WARN:	IN	Introduction-to-ASPL.raw	THE
FOLLOWING	Ref:	CANNOT	BE	RESOLVED
			<Ref:-see	section	-chaptit	"ASPL	by	Examples"	-ptt	"ASPL	by	Examples"	/>

Chapter	Ref:ASPL	by	Examples

In	addition	the	interpreter	offers	the	ASPL	scripting	language	so	that	you	can	enhance	your
system	with	powerful	commands.	Consider	the	following	script	that	shows	the	differences	in	JAR
archives.	It	can	be	called	with	a	simple	command	jarcompare.aspl	jarfile1	jarfile2.

							[Top	Text]	

		LISTING	jarcompare.aspl	ASPL	Script	jarcompare.aspl
(raw	text)

1.						#!/usr/bin/env	aspl
2.						#ENVARG=	-groupingclass	POSIX	-wsname	TRANSIENT	-singlepass
3.						
4.						;;***
5.						;;			jarcompare.aspl
6.						;;			Compare	two	JAR	archives
7.						;;			Copyright	Â©	2024	Bassem	W.	Jamaleddine
8.						;;
9.						;;***
10.					
11.					endScriptIfShellArgsLessThan	2
12.					
13.					;;DEF	FN	cmp2sets	:=	{gU	{g\,	%%1	%%2}{g\,	%%2	%%1}{g&,	%%1	%%2}}
14.					
15.					timeout	60
16.					displayoff
17.					d1	=	ggjar(jarfile,$1,calchksum,1,calentropy,1)
18.					d2	=	ggjar(jarfile,$2,calchksum,1,calentropy,1)
19.					
20.					displayon
21.					ks	chksum	size	ffl

file:///public/ASPLv1man/asplmanualv1r/img/G12_170-both-all-img3D.png
file:///public/ASPLv1man/asplmanualv1r/misc/jarcompare.aspl.numln.txt

22.					;;print	##
23.					;;print	#	SHOWING	SET	COMPARISONS	BETWEEN	$1	and	$2	
24.					;;print	##
25.					;;FN	cmp2sets(d1,d2)
26.					print	##
27.					print	#	SHOWING	SET	INTERSECTION	WITH	DIFFERENT	CHECKSUMS	BETWEEN	$1	and	$2	
28.					print	##
29.					f&`c~	d1	d2
30.					print	##
31.					print	#	SHOWING	SET	SIMILARITY	BETWEEN	$1	and	$2	
32.					print	##
33.					sim	d1	d2
34.					println
35.					
36.					endscript
37.					
38.					__END__
39.					
40.							$00	compares	two	JAR	archives
41.					
42.							$00	must	be	followed	by	the	names	of	two	JAR	archives	
43.					
44.							Example:	
45.									To	compare	the	two	JAR	archives	/tmp/TX/27238-tx.jar	and	
						/tmp/TX/38141-tx.jar	
46.									$00	/tmp/TX/27238-tx.jar	/tmp/TX/38141-tx.jar
47.					

ASPL	©	2024	by	Bassem	Jamaleddine

Figure	FFFFF	shows	the	result	of	jarcompare.aspl	when	comparing	two	JAR	achives.	Notice	how
the	colliding	names	of	the	classes	have	been	detected	and	their	different	checksums	is	displayed
in	red	color.

							Figure	jarcompare.aspl-img.png	

full	view

	-F-	Fig.	1.1.17			[Figure	Comparing	Two	JAR	Archives]
ASPL	©	2024	by	Bassem	Jamaleddine

Naturally	the	ASPL	interpreter	allows	you	to	do	set	operation	interactively	at	its	prompt	and	the
user	can	repeat	the	same	operations	shown	in	the	script	at	the	ASPL	prompt.	Writing	scripts	with
ASPL	is	simple	as	you	will	see	in	Chapter	"ASPL	Scripts".

ASPL	uses	the	notion	of	grouping	class	and	treats	algebraic	groups	per	their	meta	data.	The
grouping	class	specially	characterizes	the	set	of	data	being	treated.

ASPL	Elements	Class	Containment	is	discussed	in	Chapter	"ASPL	A	DETAILED	VIEW".

ASPL	is	premier	set	calculator	uniquely	identified	with	its	powerful	programming	of	set	elements
and	their	attributes:	ASPL	element	attributes	can	be	statically	defined,	or	dynamically	updatable	by
anonymous	subroutines,	or	refreshable	with	new	data	when	tied	to	generative	devices.	When	a
change	is	detected	in	an	element,	ASPL	archives	the	variable,	and	you	can	use	set	operators	to
display	what	has	changed.

	

file:///public/ASPLv1man/asplmanualv1r/img/jarcompare.aspl-img.png

