ASPL Programming ver 1.00
© 2024 Bassem W. Jamaleddine

| 1-1 | Introduction to ASPL

ASPL, A Set Programming Languages, is a setadic calculator. The word setadic is introduced by
the author and is specifically used herein to refer to a calculator whose symbolic operators are

termed setadic operators and all of which perform algebraic set operations on datasets. These
operators always precede their operands.

A setadic calculator, is a software appliance that takes structured data objects as input and
breaks them into their constituent containment pathes so that they can be analyzed according to
their structural components. ASPL maps algebraic data groups into containment pathes, and the
appliance offers setadic operators to aggregate and to determine the relationships between their
constituent elements. It renders them into a form suitable to be comprehended visually by the user
before displaying their relationships on the user terminal.

Therefore, ASPL is an interactive software appliance that is started on the UNIX shell command
prompt. Once ASPL is installed on the computer system, the user can start using it interactively to
do sophisticated set operations, or can run ASPL scripts on the system where ASPL is installed.
The ASPL interpreter provides a powerful and intuitive interactive computing facility that shares
some similarities to a classic calculator. However, ASPL operators are set operators, and its
variables are set variables. For the operator using ASPL, all variables are typeless and the
commands are short and simple mnemonics that are easy to remember. ASPL does not require a
database or any third party libraries. The program runs on UNIX systems where the standard Perl
interpreter is available.

Your ASPL interpreter can perform a large number of sophisticated set operations using the
preprogrammed set operators. The calculation results may then be assigned to variables called set

variables. The set variables are presented as arguments to set operators to do further calculations.
In addition, when you start the ASPL interpreter you are assigned a named workspace. It is this
named workspace that is used by the ASPL instance you started to save the results and the
variables of all your calculations. ASPL uses a stack to save the results performed by its
operations, and save the variables in internal symbol tables. ASPL variables are all global
variables, and when persistence is enabled these global variables are all shared by users
connecting to the same workspace; in which case if two or more ASPL instances are started with
the same named workspace then all variables are being shared globally by all ASPL instances.
The workspace directory should be available to all instances.

ASPL path containment can span multiple groups and subgroups along their elements. The
following figure shows groups, subgroups, and their elements. There are three groups labeled g1,
g2, and g3.

Note: ASPL groups image to be further explained in next Chapter using RANDONEBIT
workspace

full view

Groups g1 g2 g3,
their subgroups,
and their elements.

-F- Fig. 1.1.1 [THREE GROUPS, THEIR SUBGROUPS, AND THEIR ELEMENTS]
[This figure shows three groups labeled g1, g2, and g3. Each group may contain

file:///public/ASPLv1man/asplmanualv1r/img/group123a.gif

one or more subgroups or subsets. The elements within the groups and their
subgroups are marked with black dots.]

ASPL © 2024 by Bassem W. Jamaleddine

The labeled groups can be assigned to ASPL variables. For instance, v1, v2, and v3 are three
ASPL variables that represent the groups g1, g2, and g3 respectively. ASPL setadic operators can
then perform set operations on these variables. For instance to get the set union of all three
groups: gU v1 v2 v3, to get their set intersection: g& v1 v2 v3, to get their set difference: g\ v1 v2
v3, and to get their set partitions: gP v1 v2 v3.

Notice the mnemonic of these four basic set operators: gU, g&, g\, and gP in which the first letter is
a lower case 'g' depicting the subject of on which the operation will take place, and the second
letter (either one of U, &, \, and P) depicting the operation type. These four operators do the
following operations, respectively:

Instruction Operation

gu vl v2 v3 get the group union considering the subrgoups and elements

g& v1 v2 v3 get the group intersection considering the subrgoups and elements
g\ vl v2 v3 get the group difference considering the subrgoups and elements
gP vl v2 v3 partition the groups, subgroups, and their elements

In a functional way these operations can also be further explained:

Instruction Operation

gu vl v2 v3 Union(vl, Union(v2,v3))

9& v1 v2 v3 Intersection(vl, Intersection(vl,v2))
g\ vl v2 v3 Difference(vl, Difference(v2,v3)

gP vl v2 v3 Partition(vl,v2,v3)

The subject denoted with the 'g' is to consider both the subgroups and elements in their respective
groups. However, if the subject is only to do the operations on the subgroups then one can use dU,

d&, d\ and dP. Therefore to get the set union of the subgroups only of all the three groups: dU v1
v2 v3, to get their set intersection: d& v1 v2 v3, to get their set difference: d\ v1 v2 v3, and to get
their set partitions: dP v1 v2 v3.

One can look into the elements of the groups only (excluding the subgroups) by using fU, f&, fA and

fP. Therefore to get the set union of the elements only of all three groups: fU v1 v2 v3, to get their
set intersection: f& v1 v2 v3, to get their set difference: f\ v1 v2 v3, and to get their set partitions:
fP v1 v2 v3.

For ASPL this is done through its set builder and the setadic operation. For example, the
intersection of the elements found in v1, v2, and v3, denoted with f& v1 v2 v3 is to parse (or
humanly read) the information left to right: the set operator comes first (hence the meaning of

setadic operator) then followed by the identifiers (representing the labeled groups or datasets).
This is something that the reader is accustomed to from basic schooling, and can be seen through
ASPL setbuilder by typing setbuilder gU v1 v2 v3 at the ASPL prompt:
aspl> setbuilder gU vl v2 v3
QUOTIENT SET BUILDER
{gU v1 v2 v3} <=> gU vl v2 v3
Detailed view:
{gU v1 v2 v3} <=>
gu vl v2 v3
| | | +----> set-variable
| | Fecmmene-- > set-variable
| L T > set-variable

o > get the subgroups and the elements union

Set builder syntax is read from left to right, or from bottom to top.
ALl ASPL setops are setadic: they take a setop followed by set variables.

As for the intersection, one can type setbuilder g& v1 v2 v3 at the ASPL prompt:

aspl> setbuilder g& vl v2 v3

QUOTIENT SET BUILDER

{g& v1 v2 v3} <=> g& vl V2 v3
Detailed view:
{g& v1 v2 v3} <=>

g& vl v2 w3
| | | +----> set-variable
| | Fomememaan > set-variable
| L > set-variable
oo > get the subgroups and the elements intersection

Set builder syntax is read from left to right, or from bottom to top.
ALl ASPL setops are setadic: they take a setop followed by set variables.

Each element within a group or subgroup can be further described and characterized by a set of
attributes that are attached to it, and comparing it to another element is therefore based on these
attributes. In ASPL every element has a checksum attribute, and the language provides a feature
to subordinate setadic operators with a conditional predicate. Repeating the previous operation g&
v1 v2 v3 but we want to get only these subgroups and elements that have different checksums:
setbuilder g& ¢ v1 v2 v3

aspl> setbuilder g& c~ vl v2 v3
QUOTIENT SET BUILDER
{g& c~ vl v2 v3} <=> g&'c~ vl v2 v3
Detailed view:

{g& c~ vl v2 v3} <=>

[| | +----> set-variable

| | o > set-variable

[T T T > set-variable

[T T T T > have different checksums

o > such that

e > get the subgroups and the elements intersection

Here we used the acute backtick * followed by a predicate. ASPL refers to this backtick simply with
the word 'tick' and many of ASPL set operators can be ticked with specific predicates. For
example, in the above example the operator is ticked with the predicate saying "when checksums

are differents" g&* c~.
In general, we are also accustomed to the forward slash, called a stroke or the solidus symbol /,
that may follow a set operator to depict a quotient relation, and in ASPL this is called stroking a set

operator. In the following example, the group intersection operator (g&) is being stroked with the
quotient relation r3. Notice that the stroke is directly followed by a tilde then the relation r3. r3 has

been defined by the user but expanded here as frx=.*$, mtm~ (that is saying to match the elements
with regular expression .*$ and whose mtime attribute differ).

aspl> setbuilder g&/~r3 vl v2 v3
QUOTIENT SET BUILDER
{9&/~r3 vl v2 v3} <=> g&/frx=.*$,mtm~ vl v2 v3
Detailed view:
{g&/~r3 vl v2 v3} <=>

g& / frx=.*$,mtm~ vl v2 v3

| | | | | +----> set-variable

| | | | Fommmmeea > set-variable

| [| R R > set-variable

| [AR LR > have different make times

| R R > file name regular expression

R R R > stroking the Quotient Relation
o > get the subgroups and the elements intersection

The definition of r3 was performed with the command shown below and at any time the user can
type q to display the quotient relation table:

aspl> g r3 := frx=.*$,mtm~
aspl> q

Coded QR

r3 | (1) root | frx=.*$, mtm~

This is equivalent to typing g& mtm~ v1 v2 v3 and in this particular case all the following three
commands are equivalent:

aspl> g&/~r3 vl v2 v3
aspl> g&/frx=.*$,mtm~ vl v2 v3
aspl> g& mtm~ vl v2 v3

In this book the ASPL prompt is denoted with aspl> and the UNIX shell prompt is represented
with the hash # symbol.

See appendix AAAAA on how to install ASPL on your UNIX system.
B ASPL Building Blocks

Note: ASPL Startup TRIVIAL ASPLv1.00-startup-trivial.png

full view

Fle Edit View Bookmarks Settings Help
20:01 mmol: ~ # aspl -wsname TRIVIAL

STARTING ASPL SESSION WITH WORKSPACE: TRIWVIAL
NAMED GROUP: ZEROGROUP
last saved 2023-05-15 ©2:31:49, 298903

20:2:53 root@mm@l /root aspl:1 > []

ll root : aspl

-F- Fig. 1.1.2 [ASPL Startup TRIVIAL]J[ASPL Starting with TRIVIAL workspace]
ASPL © 2024 by Bassem W. Jamaleddine
(* footnote: An interpreter typically has it own virtual machine, but ASPL does not. The ASPL

interpreter is built on top of pure Perl interpreter and it uses the Perl powerful virtual machine in
executing its tasks.)

The TRIVIAL workspace is available with every ASPL distribution, and its grouping class is the
ZEROGROUP which contains the bare information that is required by any grouping class in ASPL.
The command wid displays the current workspace being loaded and its up time, and the command
egCwhoami pings its grouping class container. Both commands are shown in Figure FFFFF.

Note: ASPL Startup TRIVIAL ASPLv1.00-startup-trivial.png

full view

£ 2

ok

file:///public/ASPLv1man/asplmanualv1r/img/ASPLv1.00-startup-trivial.png
file:///public/ASPLv1man/asplmanualv1r/img/ASPLv1.00-startup-trivial-img0.png

File Edit View Bookmarks

Settings Help

20:19 mmo@l: ~ # aspl -wsname TRIVIAL

STARTING ASPL SESSION WITH WORKSPACE: TRIWIAL

NAMED GROUP: ZEROGROUF

last saved 2023-05-15 02:31:49.619851

20:19:42 root@mm0l /root aspl:1 > wid

answers
enswers
unswers
operations

oo

uptime 0 days
TRIVIAL 0 days

0 hours @ minutes 1 seconds
0 hours @ minutes 1 seconds

20:19:44 root@mm®l /root aspl:2 > egCwhoami

2>2>2252222>>1 AM ZEROGROUP<<<<<<<<<<<<< being called here at proc_sub_whoami
BRIDGE=/opt/ASPLv1. 00/BRIDGE
ASPL1_00_BRIDGE=/opt/ASPLv1.00/BRIDGE
ASPL1_00_HOME=/opt/ASPLv1.00
ASPL/Groupings/Elements/ZEROGROUP/Enode. pm
fopt/ASPLv1.00/BRIDGE/ASPL/Groupings/Elements/ZEROGROUP/Enode. pm

ASPL::Groupings: :Elements::ZEROGROUP: :Enode LINE#9 caller: ASPL::Groupings::Helper::Enode

ASPL::Groupings: :Elements:

:ZEROGROUP: :Enode LIME#18 caller: ASPL::Groupings

zisFnO=ASPL: :Groupings: :Elements: :ZEROGROUP: :Enode: : proc_sub_whoami
zisFn=ASPL: :Groupings: :Elements: : ZEROGROUP: :Enode: :__ANON__
self=ASPL: :Groupings: :Elements: :ZEROGROUP: :Enode=HASH({0x7d800da)

arg=

Ksumatt= ARRAY(Ox7d829c8
Bnode= ARRAY(0x7a9e028)
Enode= ARRAY(0x78d5378)
confess = 0

o =

= mtime chksum entropy
mtime aslm
mtime aslm chksum entropy ppdd ffl dosi

20:19:47 root@mm@l /root aspl:3 > []

H root : aspl

1 :Elements

-F- Fig. 1.1.3 [ASPL Startup TRIVIAL][ASPL Starting with TRIVIAL workspace]
ASPL © 2024 by Bassem W. Jamaleddine

ASPL has eight major components:

« the syntax factory
« the set semantic processor

« the verbs transformer and dispatcher

« the set accumulator
« the set algorithmic processor

« the dynamically loadable container for the grouping classes
« the dynamically loadable container for generative functions
« the workspace manager for symbols and sessions management

These are shown in Figure FFFFF, and are also reflected in ASPL layout directories shown in

Figure FFFFF.

Note: ASPL building blocks image aspl-block-old.png

full view

y >

F o=

file:///public/ASPLv1man/asplmanualv1r/img/aspl-block-old.png

ASPL
SYNTAX FACTORY
WORKSPACES
workspace manager
SOPVERBS symbol table
set operation verbs sessions manager
SYMBOPS
DDM GAD SOPX GGs
DUCO DISPONO MEMORO Loadable GGs
GROUP ALGEBRAIC DATA Functions
SET OPERATION DISPATCHER
SETACCUMULATOR
ELEMENT
GROUPING
SOPALGO CLASS
SET OP. ALGORITHMS Loadable Classes:
Meta Group Attributes
DISPLAY
epitoids

-F- Fig. 1.1.4 [ASPL BLOCK][ASPL Internal Building Blocks]
ASPL © 2024 by Bassem W. Jamaleddine

[Top Text]

-L- Listing. 1.1.1 [ASPLv1.00 Directory Tree ASPL-tree0.dir.numI]J[ASPLv1.00
Directory Tree]

ONOOUTD_ WN -

ASPLv1.00
-- bin

-- etc
-- lib

-- BRIDGE
|-- ASPL

-- bin

(raw text)

BAYLEVELGROUP
*-- Feeder
EmStatv2
“-- Cexec
EmVectors
Formattings
GGs
| -- GEO3TRI
| *-- CTXSETOP
| -- OSCILLATORSGROUP
| *-- Feeder
" - - SYSENVGROUP
' -- Feeder

Groupings
| -- Elements
| | -- ONEGROUP
| *-- ZEROGROUP
| -- Helper

- stubs
MockedGroupings
*-- MockedObjects

ASPLSNTX
Directory
*-- DDM
DISPLAY
MemUsage
PRIMITIVES
SETACCUMULATOR
SOPALGO
SOPVERBS
SOPX
SYMBOPS

file:///public/ASPLv1man/asplmanualv1r/misc/ASPL-tree0.dir.numl.txt

41. [| *-- FTX_VERBPROCESSORS_BUILDER

|
42, | | -- Utilities
43. | ‘-- Simple
44, |-- license
45. *-- shared
46.

ASPL © 2024 by Bassem Jamaleddine
[Top Text]

-L- Listing. 1.1.2 [ASPLv1.00 Directory Tree ASPL-tree0.dir.numI][ASPLv1.00
Directory Tree]

(raw text)
1. ASPLv1.00
2. |-- bin
3. | -- BRIDGE
4. | |-- ASPL
5. | | |-- BAYLEVELGROUP
6. | | | *-- Feeder
7. | | | -- EmStatv2
8. | | | "-- Cexec
9. | | | -- EmVectors
10. | | | -- Formattings
11. | | |-- GGs
12. | | | | -- GEO3TRI
13. | | | | *-- CTXSETOP
14. | | | | -- OSCILLATORSGROUP
15. | | | | " -- Feeder
16. | | | -- SYSENVGROUP
17. | | | "-- Feeder
18. | | | -- Groupings
19. | | | | -- Elements
20. | | | | | -- ONEGROUP
21. | | | | -- ZEROGROUP
22. | | | | -- Helper
23. | | | ‘-- stubs
24, | | " -- MockedGroupings
25. | | *-- MockedObjects
26. | “-- bin
27. |-- etc
28. |-- lib
29. | |-- ASPL
30. | | | -- ASPLSNTX
31. | | |-- Directory
32. | | | *-- DDM
33. | | | -- DISPLAY
34. | | | -- MemUsage
35, | | |-- PRIMITIVES
36. | | |-- SETACCUMULATOR
37. | | | -- SOPALGO
38. | | | -- SOPVERBS
39. | | |-- SOPX
40. | | | -- SYMBOPS
41. | | | "-- FTX_VERBPROCESSORS BUILDER
42. | | T-- Utilities
43. | “-- Simple
44, |-- license
45. *-- shared
46.

ASPL © 2024 by Bassem Jamaleddine

Starting ASPL in verbose mode will also reflect where ASPL loads its components at startup as
shown in Figure FFFFF.

ASPL Startup on the UNIX Shell Prompt Explained

full view

file:///public/ASPLv1man/asplmanualv1r/misc/ASPL-tree0.dir.numl.txt
file:///public/ASPLv1man/asplmanualv1r/img/aspl-startup-1a.png

File Edit View Bookmarks Settings Help

CEELERC G CIIEEIEE S 2spl WS1 -verbose

ASPL # 1.00 workspace WS1 will be loaded from

ASPL PROGRAM INSTALLED IN /opt/ASPLv1.00 this repository
ASPL WORKSPACE WILL IGNORE SESSIONS MANAGEMENT
ASPL WORKSPACE VARIABLES HAVE QUOTIENT-VARIABLES ENABLED

ASPL CLI # 1.00

PROGRAM DIRECTORY: /opt/ASPLv1.0@

GROUPING CLASS NAME: POSIX

WORKSPACE REPOSITORY: /root/.aspl/WSP/WORKSPACES1

WORKSPACE NAME: WS1

LAST SAVED: 2023-02-21 02:37:07.655478

ELEMENT GROUPINGS CLASS: /fopt/ASPLv1.08/BRIDGE/ASPL/Groupings
LOADABLE GGs DIRECTORY: /fopt/ASPLv1.08/1lib/ASPL/GGs

DDM CONFIGURATION: /opt/ASPLvl.e@/etc/ddm.conf

DDM POOL: /root/.aspl/dev/DDM_DATA

MEMORY USED: 344408K

DISPLAY MODE: 2
LOGGING TO sSTDOUT

PERSIST VARIABLES IS OFF . . s
RUN ASPL SCRIPT IN TWO PASSES Grouping class POSIX

VARIABLES FREELY ASSIGNED defines ﬂ].e l].]etadata
attributes and loaded

Y N from this directory (not
FIT NN L i : ; !
ST N ST available with bridgeless)
PATL P T .
I N1 / GGs functions are loaded

from this directory
STARTING ASPL SESSION WITH WORKSPACE: WS1
NAMED GROUP: POSIX
last saved 2023-82-21 B2:37:07.667119

aspl:1 2:4:28> [|

-F- Fig. 1.1.5 [ASPL Startup on the UNIX Shell Prompt Explained]
ASPL © 2024 by Bassem Jamaleddine

A user interacting with ASPL places a setadic operation to the interpreter. The interpreter submits
it to the syntax factory, analyzes it, builds its object, and locates its verb. It then dispatches the
object to its algorithmic set processing agent after fetching its symbols from either the answer
stack or the symbol table. The result of the processed expression is finally saved in the symbol
table, pushed on the top of the stack, and displayed on the terminal. The simplest way to see the
flow of ASPL processing is to enable the tracing facility of ASPL (see Appendix CCCCC).

B ASPL Commands with asplcmd

At this point we introduce the asplemd command because it is a quick way to execute short ASPL
statements through the UNIX shell prompt.

You can direct ASPL to execute some of its statements by issuing asplemd at the shell prompt
followed by a a string. If the string is more than a word then it must be quoted since it is passed
like a single argument to asplcmd. Without going into details on how asplcmd works, as this will
become clear after reading the chapter "ASPL Scripts", it is used here to facilitate some
explanation on ASPL displayable output.

The following command compares the datasets saved in the variable mg123 of workspace
RANDONEBITMIX.

asplecmd 'load RANDONEBITMIX;gU mg123'

This command causes ASPL to load the workspace RANDONEBITMIX, then issues the gU to
display the group unions found in the datasets saved in the variable mg123. The semicolon is used
to separate the two statements. Observe the output showing the groups, subgroups, and elements.
The next section explains the symbolic schemes and colors used by ASPL when displaying its
output.

The following command compares two variables a2 and a7 that has been saved in workspace
WS1.

asplemd 'load WS1; ks mtime chksum ppdd; gU a2 a7’

There are three statements separated by semicolons in this string passed to ASPL. The first
statement load the workspace WS1, the second statement set the ks attribute vector to mtime

chksum ppdd, and the third statement display the group union of the datasets saved in a2 and a7.

When you pass a string to asplcmd the interpreter will parse the string and execute its contents
then exit.

B ASPL Symbolic Shemes and Colors

ASPL is not a GUI application and does not require any GUI AP, it uses plain ASCII characters for
its symbolic operators and identifiers, and uses the ANSI colors scheme provided by the UNIX
terminal. (* footnote: APL users should be alarmed as there is no APL Greek symbols in here!) At
any time you can start ASPL at the UNIX shell prompt of a terminal (or even on a dumb terminal)
or an X Window session. Figure FFFFF-1 shows ASPL started in a KDE session.

Because the set comparison operators classify data into three basic categories: intersection,
union, and difference, then it is recommended to display the output using three different colors. In
addition, since a group may contain subgroups and elements, then some symbolic scheme is
needed to show the group differences along these colors. ASPL uses both colors and symbolic
schemes to facilitate the readability of its output. Using the ANSI colors that is readily available on
all UNIX terminal, and compounding it with symbolic schemes will help to distinguish when
subgroups and elements are unique, equal, or different.

Figure FFFF shows the partial result of the command discussed in the previous section:
asplemd 'load RANDONEBITMIX;gU mg123'

Recall that there is no restriction on the name of subgroups and elements, that is an element name
can be the subgroup name in another group, and even can be the subgroup name in the same
group (as long as it is at different level). This is similar to the UNIX filesystem where in the same
directory you cannot have a directory and a file using the same name.

To understand the meaning of ASPL colors and symbolic schemes let's go over figure FFFF where
the output has been labeled at five points as follow:

® guU: fl=) this is the gU of g1 g2 g3 where a difference in the element has been detected: it is the
subgroup df2 that was detected in the subgroup ./df2/df1

@ gU: +f) element df3 only in subgroup ./df2/df1/ in group g3

® gU:d!=) subgroup df2 in subgroup ./df2/ in all groups g1 g2 and g3 but they differ

@ gU: f==) element df1 in subgroup ./df2/df2/ in all groups g1 g2 and g3 and is the same

® gU: g!=) mixed as df3 is ./df2/ is subgroup in groups g1 g2 and it is an element in group g3

Notice also the colors: equality shown in green, difference shown in red, and a loner shown in
gray.

Note: ASPL Symbolic Shemes and Colors g192g3-12345.png

full view

(1) Element df2 in subsubgroup ** CHANGED F) fl changed pL gl g2 g3 (<./df2/dfl/> / df2)
./dfydf][ofgl 82 and g?, gu f~) dfz b.‘:lt:l chksum=1 entropy=1 ppdd=;. ffl= aelm=
but differ gl f-) df2 bit=1 chksum=1 entropy=1 ppdd=g> ffl= aelm=

gU f~) df2 bit=8 chksum=0 entropy=1 ppdd=g= ffl= aelm=
5 Ellement df3 only in = gUIEE] ** ONLYIN F) fl onlyd pL g2 (<./df2/df1/> / df3)
- df3 bit=1 chksum=1 entropy=1 ppdd=g: ffl= aelm=
)Subsgg Sﬁ%%i%;dégﬁ@ ** GHANGED D) dir changed pL gl g2 g3 (<./df2/> / df2)
(3) 7 gu d~) df2 bit=0 chksum=0 entropy=1 ppdd=g: ffl= aelm=
subgroup ./df2 in all gu d~) df2 bit=1 chksum=1 entropy=1 ppdd=g> ffl= aelm=
three groups but differ gu d~) df2 bit=8 chksum=8 entropy=1 ppdd== ffl= aelm=
(ay Hemect ati i brubarovy BRI e opes ook Eic ST T/ AL s
gu - o i y= i = >
.Idﬁ!dﬁlofg2g2aud g3 dfl bit=1 chksum=1 entropy=1 ppdd=c> ffl= aelm=
and being equal dfl bit=1 chksum=1 entropy=1 ppdd=c> ffl= aelm=
e ** CHANGED F) f1 changed pL gl g2 g3 (<./df2/dfz2/> / df2)
df2 bit=0 chksum=0 entropy=1 ppdd=cl ffl= aelm=
df2 bit=1 chksum=1 entropy=1 ppdd=g> ffl= aelm=
df2 bit=8 chksum=0 entropy=1 ppdd=g= ffl= aelm=
[«] ** EQUAL F) fl equal pL gl g3 (<./df2/df2/> / df3)
df3 bit=0 chksum=0 entropy=1 ppdd=c1 ffl= aelm=
. . df3 bit=0 chksum=0 entropy=1 ppdd=c> ffl= aelm=
(5) Mixed df3 in subgroup ** NIXED M) mixed both plL gl g2 g3 (<./df2/> / df3)
J'dfzf{!fgl g2 and g3; it df3 bit=0 chksum=0 entropy=1 ppdd=c1 ffl= aelm=
isa subsubgroup in gl and g2 df3 bit=0 chksum=0 entropy=1 ppdd=;" ffl= aelm=
hile it iz an element in g3 df3 bit=0 chksum=0 entropy=1 ppdd=;" ffl= aelm=
Whtle 1 E [+ ** EQUAL F) fl equal pL gl g2 (<./df2/dfa/> / dfl)
dfl bit=1 chksum=1 entropy=1 ppdd=cl ffl= aelm=
dfl bit=1 chksum=1 entropy=1 ppdd=c> ffl= aelm=
= ** EQUAL F) fl equal pL gl g2 (<./df2/df3/> / df2)
df2 bit=0 chksum=0 entropy=1 ppdd=c1 ffl= aelm=
df2 bit=0 chksum=0 entropy=1 ppdd=0> ffl= aelm=
= ** ONLYIN F) fl onlyd pL gl (<./df2/df3/> / df3)
df3 bit=1 chksum=1 entropy=1 ppdd=cl ffl= aelm=

ETHES] ** EQUAL D) dir equal pL g2 g3 (<./> / df3)
gl d=) df3 bit=1 chksum=1 entropy=1 ppdd=0> ffl= aelm=
] =) df3 bit=1 chksum=1 entropy=1 ppdd= ffl= aelm=

-F- Fig. 1.1.6 [SYMBOLIC SHEMES AND COLORS][ASPL Symbolic Shemes and

Colors]

file:///public/ASPLv1man/asplmanualv1r/img/g1g2g3-12345.png

ASPL © 2024 by Bassem W. Jamaleddine

This example might be confusing, but it was selected on purporse to make it clear that the label
names of subgroups and elements are immaterial to ASPL algorithmic routines.

Let's take a look at another practical example where a file name and a directory name might
intersect on the UNIX filesystem. Assuming you have access to the /tmp directory, issue the
following commands on your shell prompt:

mkdir /tmp/foodiri
mkdir /tmp/foodir1/abc
mkdir /tmp/foodir2

touch /tmp/foodir2/abc

asplemd "createworkspace TRANSIENT POSIX;ggdir(dir,/tmp/foodir1);ggdir(dir,/tmp/foodir2);gU"

The first two commands create a directory and a subdirectory /tmp/foodir1 and /tmp/foodiri/abc
respectively, and the next two commands create a directory and a file /tmp/foodir2 and
/tmp/foodir2/abc respectively. The last command call ASPL to show the difference between the two
directories /tmp/foodir1 and /tmp/foodir2.

The statement createworkspace TRANSIENT POSIX tells ASPL to load the temporary
TRANSIENT workspace with element grouping class POSIX. The next statement
ggdir(dir,/tmp/foodir1) tells ASPL to call the grouping function ggdir() on directory /tmp/foodir1.
These statements will become clearer in the next chapters. For now, if you have issued these
command succeffully then you are already using ASPL.

The result of comparing the comparing the directories is shown below: Note: Example
comparing a file and a subdirectory that have the same name foodir-commented.png

full view

There are 2 sets representing: /tmp/foodirl /tmp/foodir2|

** CHANGED D) dir changed pL /tmp/foodirl /tmp/foodir2 (<> / .)
gU d~) . uid=root gid=root mtime=2024-02-19 20:11:00 chksum=0 ppdd= ffl=
gUu d~) . uid=root gid=root mtime=2024-02-19 20:11:57 chksum=6955650 ppdd= ffl=
** MIXED M) mixed both pL 7tmp/foodirl 7tmp/foodirZ (<.7> / abc)
Su},dlﬁcmw gu d~) abc uid=root gid=root mtime=2024-02-19 20:11:11 chksum=0 ppdd= Tfl=
and file bylhegu f~) abc uid=root gid=root mtime=2024-02-19 20:11:57 chksum=4294967295 ppdd= ffl=

same name
/tmp/foodirl 2 entries
/tmp/foodir2 2 entries

DOME PROCESSING gU

20:17 mmol: /tmp # [J

-F- Fig. 1.1.7 [Example comparing a file and a subdirectory that have the same
name]

ASPL © 2024 by Bassem W. Jamaleddine

Appendix DDDD shows a summary of ASPL symbolic schemes and how the user can edit the
color configuration settings.

B Why do you need to use ASPL

There are myriad reasons why you need to use the ASPL interpreter: to detect and highlight
changes of systemic data in a UNIX cloud environment, to validate configuration data in a UNIX
cluster, to resolve collision of class names in JAR archives, to compare analogous PATH across
systems, etc. The following figure shows the result of a UNIX system whose socket has changed
states:

Figure monitor-socket-state.png

full view

file:///public/ASPLv1man/asplmanualv1r/img/foodir-commented.png
file:///public/ASPLv1man/asplmanualv1r/img/monitor-socket-state.png

File Edit View Bookmarks Settings Help
13:32:38 root@mm@l /root aspl:4 > ,fU sok12345 sok12345@1 sok12345@2 sok12345@3 ~

32036(s0k12345) 32636(s0k12345.2) 32036(s0k12345.3) 32036(s0k12345.1)

o fu: f
40738501)

fU~) 948738501 sokloca=0.0.0.0:0 sckrema=1.0.0.18:74565 sokstate=TCP_LISTEN soktxq=00000000 sokrxg=00800001 sok
tract=00 sokuid=0 soktimo=0 sokinode=940738501

fu~) 940728501 sokloca=0.0.0.08:0 sokrema=1.0.0.18:74565 sokstate=TCP_LISTEN soktxg=00000000 sokrxg=00000000 sok
tract=00 sokuid=0 soktimo=0 sokinode=940738501

fU~) 940738501 sokloca=0.0.0.0:0 sokrema=1.0.0.18:74565 sokstate=TCP_LISTEN soktxg=00000000 sokrxg=00000000 sok
tract=00 sokuid=0 soktimo=8 sokinode=840738501

fU~) 940728501 sokloca=0.0.0.0:0 sokrema=1.0.0.18:74565 sokstate=TCP_LISTEN soktxg=00000000 sokrxg=00000000 sok

—- CHANGED F) fl'changed pL 32036(sok12345) 32038(s0k12345.2) 32036(s0k12345.3) 32026(s0k12345.1) (<./> / 9

tract=00 sokuid=0 soktimo=8 sokinode=940738501
-- CHANGED F) fl'changed pL 32036(sok12345) 32036(sokl12345.2) 32036(sok12345.3) (<./> / 948738502)

f 940728502 sokloca=1.0.0.18:266291 sokrema=1.0.0.18:74565 sokstate=TCP_CLOSE_WAIT soktxg=00000000 sokrxg=0
0000001 soktract=00 sokuid=0 soktim sokinode=940738502 =
fu~) 9407238502 sokloca=1.0.0.18:266291 sokrema=1.0.0.18:74565 sokstate=TCP_ESTABLISHED soktxg=00000000 sokrxg=0
0000000 soktract=00 sokuid=0 soktimo=0 sokinode=940738502 s
fU~) 948738502 sokloca=1.0.0.18:266291 sokrema=1.0.0.18:74565 sokstate=TCP_CLOSE_WAIT soktxq=00080008 sokrxg=0
0000001 soktract=00 sokuid=0 soktimo=0 sokinode=940738502 =

32036(sok12345) 2 entries

32036(sok12345.2) 2 entries
32026(s0k12345.2) 2 entries
32036(sok12345.1) 1 entries

DONE PROCESSING ,fU sok12345 sok12345@1 sok12345@2 sok12345@3

root aspl:5 > []

<>

) root : bash root : aspl be

-F- Fig. 1.1.8 [Figure Monitoring UNIX System Socket State]
ASPL © 2024 by Bassem Jamaleddine

Furthermore one can use ASPL to do simulation of players throwing dice on a crap table. Figure
FFFFF shows the result of the simulation of players tossing dice: find the event when all the three
players have the same outcome.

Figure randomdice.aspl-900.png

full view

File Edit View Bookmarks Settings Help
0L:34 mmol: ~ # randomdice aspl 900 ~
SIMULATION FOR 3 PLAYERS THROWING 900 TINES DICE ON A CRATABLE

DONE PROCESSING pl = ggdice(player,playerd, throws,900,dieltrials, 5 §2,die2trials, 3 $3)

DONE PROCESSING p2 = ggdice(player,player2, throws,900, dieltrials, 5 $2,die2trials, 3 $3)

DONE PROCESSING p3 = ggdice(player,player3, throws, 900, dieltrials, 5 §2,die2trials, 3 $3)

SHOW THE THROW NUMBERS WHEN ALL 3 PLAYERS HAVE ABSOULTELY THE SAME OUTCOME

-- EQUAL F) fl'equal pL player3 player2 playerl (<throws73/> / dice)

) dice faces=32 facel=3 face2=2 chksum=8 entropy=5.170 ppdd= fl=
fl=
fU=) dice faces=32 facel=3 face2=2 chksum=8 entropy=5.170 ppdd= fl=

player3 1 entries
playerz 1 entries
playerl 1 entries

DONE PROCESSING fU'ks= pl p2 p3

SIMILARITY WHEN ALL 2 PLAVERS HAVE ABSOULTELY THE SAME OUTCOME

subsetl vs subset2
1 player3(2.p2) | playeri(1.pl) 0.02556
player2(2.p2) | playeri(1.pl) 0.03556
3 player2(2.p2) | player3(3.p3) 0.03444

~

player3(3.p3) | playeri(1.p1) |
player2(2.p2) | playerl(1.p1) 0.03556
player2(2.p2) | player3(3.p3) | 0.03444

0.02556

DONE PROGESSING sim'fflz p1 p2 p3

SHOW THE THROW NUMBERS WHEN ALL 3 PLAYERS HAVE THE SAME SUM

nting: playerd play

-- EQUAL F) fl'equal pL player3 player2 playerl (<throwsS73/> / dice)
) dice faces=32 facel=3 face2=2 chksum=8 entropy=5.170 ppdd= f
dice faces=32 facel=3 face2=2 chksum=8 entropy=5.170 ppdd: £fl=
dice faces=32 facel=3 face2=2 chksum=8 entropy=5.170 ppdd= fl=
-- CHANGED F) f1'changed pL player3 playerz playerl (<throw73/> / dice)

fU-) dice faces=12 facel=1 face2=3 chksum=3 entropy=5.170 ppdd= fl= aelm=
U~) chksum=3 entropy=5.170 ppdd= fl= aelm=
U-) T chksum=3 entropy=5.170 ppdd= fl= aelm=
player2 2 entries
player2 2 entries
playerl 2 entries
DONE PROCESSING fUc= pl p2 p3
SIMILARITY WHEN ALL 3 PLAVERS HAVE SAME SUM
subsetl vs subset2
1 player3(2.p2) | playerl(1.pl) 0.04687
2 player2(2.p2) | playeri(1.p1) 0.06222
3 player2(2.p2) | player3(3.p3) 0.06322
player3(2.p2) | playeri(l.pl) | 0.04667
playerz(z.pz) | playeri(1.p1) | 0.06222
player2(2.p2) | player3(3.p3) | 0.06333
DONE PROCESSING sim fflc p1 p2 p3
01:34 mmo1: ~ # ~
01:34 mmol: ~ #] v
i | root : bash ASPL : bash ASPL : bash |

-F- Fig. 1.1.9 [Figure Simulation for Three Players Throwing Dice]

ASPL © 2024 by Bassem Jamaleddine
ASPL can also treats DNA sequences as datasets and you can toy with these sequences through
its alignment algorithms. Figure FFFFF shows a mutant when altering the sequence randomly, and
figure FFFFF show the DNA sequence alignment of two men.

Figure mutant.aspl-img1.png

file:///public/ASPLv1man/asplmanualv1r/img/randomdice.aspl-900.png

full view

fle Edit View Bookmarks Settings Help
13:11 mmol: ~ # mutant.aspl man3 man3@1 2 ~

similarity alig

matchcolor 117 97 .50%
seqlcolor:] 0.00%
seq2color:] 0.00%
misscolor: 3 2.50%
AGC GAA GCT A TAC TAA ATC TCA GAA CAC GAG GTG TAA CAG AGT GGG AAA GGA TCA AGA
!
AGC GAA GCT A TCC TAA ATC TCA GAA CAC GAG GTG TAA CAG AGT GGG AAA GGA TCA AGA
”J TG ACT A GAT ACA TGG AG TA TAA GG CTT TG AT AGE AR AT GG ATC ATA
l

6 TTG ACT CAC GAT ACA TGG AGC TAC TAA GGC CTT CTG CAT AGE CAA CAT GGC ATC ATE
TET CGA CGA AGA CA 6T €GG ATT GTG GAA TCC AAG GTA GTA ACG TAA ACT AAG GAT T6T
T6T CGA CGA A ET" &6 AT 676 T GTA GTA ACG TAA GAT TGT
AC AG ACT TGE GAT AAT ACG GAT C€GG TTT GGG ACA GCA TCG CAG TGA TG G GGA

|

ACC CAG ACT TGG GAT CCC AAT ACG GAC CGG TTIT GGG ACA GCA TCG CAG TGA TG(CCG GGA
cA TC T6G AGC GT6 AGA ACT GTG AAG ATT A 66T TCA GTC AAE A GAG TAG A TG
AT CTC TGG AGC GTG AGA ACT GTG AAG ATT A 6T TCA GTC AAE A GAG TAG A TG
s66 TIT CT CAA GAT CAT ACG CTG TTT GTA ATA GGA GAT CTT &CT T6C TTC ACG CGA
666G TTT GAC CT CAA GAT CAT ACG CTG TTT GTA ATA GGA GAT CTT GCT TGC TTC ACG CGA

AGC GAA GCT ACC TAC TAA ATC TCA GAA CAC GAG GTG TAA CAG AGT GGG AAA GGA TCA AGA CCG TTG ACT CAC GAT ACA TGG AGC TAC TAA G
GC CTT CTG CAT AGG CAA CAT GGC ATC ATA TGT CGA CGA AGA CAC CGT CGG ATT GTG GAA TCC AAG GTA GTA ACG TAA ACT AAG GAT TGT AC
C CAG ACT TGG GAT CCC AAT ACG GAT CGG TTT GGG ACA GCA TCG CAG TGA TGC CCG GGA CAT CTC TGG AGC GTG AGA ACT GTG AAG ATT CCA
GGT TCA GTC AAG ACC GAG TAG CCA TGC GGG TTT GAC CCT CAA GAT CAT ACG CTG TTT GTA ATA GGA GAT CTT GCT TGC TTC ACG CGA

AGC GAA GCT ACC TCC TAA ATC TCA GAA CAC GAG GTG TAA CAG AGT GGG AAA GGA TCA AGA CCG TTG ACT CAC GAT ACA TGG AGC TAC TAA G
GC CTT CTG CAT AGG CAA CAT GGC ATC ATG TGT CGA CGA AGA CAC CGT CGG ATT GTG GAA TCC AAG GTA GTA ACG TAA ACT AAG GAT TGT AC
C CAG ACT TGG GAT CCC AAT ACG GAC CGG TTT GGG ACA GCA TCG CAG TGA TGC CCG GGA CAT CTC TGG AGC GTG AGA ACT GTG AAG ATT CCA
GGT TCA GTC AAG ACC GAG TAG CCA TGC GGG TTT GAC CCT CAA GAT CAT ACG CTG TTT GTA ATA GGA GAT CTT GCT TGC TTC ACG CGA

WRITING DNAs TO FILE: /root/.aspl/tmp/foo

GG FUNCTION TO SHOW DMA ALIGNMENT

DONE PROCESSING ggAlignDnaSeq(v1,man3,v2, man3@l, fragsize,3) -- -1-1-1-1-1-1
13:12 mmol: ~ #] ~
v
root : bash root : bash &
-F- Fig. 1.1.10 [Figure DNA Sequence for Mutant]
ASPL © 2024 by Bassem Jamaleddine
Figure mutant.aspl-img.png
full view
File Edit View Bookmarks Settings Help
=
12:54 mmol: ~ # mutant.aspl manl man2 3
similarity alig
matchcolor 12 11.65%
seqlcolor: 32 2.91%
seq2color: 22 21.36%
misscolor: 88 85.44%
GTG GCC TGG GAG ATC ACA ACT GGA AAG CAA TGT GCG GCG GGC TAC ATC AAA ACT GGG TTC
I l 1 1 1 1 1 l I I 1 1 1 1 1 | | l I I
CGT ATA TAA GCT TAA GCG CTC ACG CGC GCG ATT CAT CCA TTG ACA GTG CGT AGC TTG AGG
BGC CTC FR OOk ook ok okl Rk GGG GCG GCA ATC CAT AAG TGC ACT GGC TTG ACC TTT
! > > > > > > ! | | | 1 1 ! | | | | |
GTC CTC CTT CGT TT6 TAA GTA GAC TCT GAC CGA CAA ACA CGC GCC ACA TAC GCT ATA AAA
GG AR mRA AAR TET GT *** CCT TGA GGC TCT GGT AAG TAA CCT TGG GAC C6T TA men
> > > 1 > I | ! I 1 ! ! | | I >
GG CGT TAA TAT CAG GT TCC GAG ATT CGA ATA GGT TGT GGT CGA GTG TGC GTA CTA CC6
dohwo Akk o AGC TAA GAT ATC ATA GCT GAT AAA GGT TAA GCT GCA CGE TCA CAA TCT ACA AAA
> > ! 1 1 1 1 | | | | | 1 1 ! | | | |
CTG CTG GGG TAG AGA GTA TAC TAC AGT AGC CTT TGC ACT AAG CCT GTT TCC GAA CCA AAA
mERORENOACC CTC TCA AA AGA ACT CAC CCA AT *** TAT CAT CAC CTC TGC TAA AGA G
> > ! 1 1 < ! I I > 1 1 1 I l I I
TIT AGG GGG GGG GBA AAC *** CGA TGA ATT CAT TGE GAT GGT CAG GGG GGC AGC TTA CCG
*ax Ak TCA ATA TGA TGG ATT ATA %% *%% %&% AgT %% CAC GAT CGG TAT CCA TTG GTA
> > ! 1 1 1 1 > > > 3 1 1 < < ! !
TTG AGT AAT AAA AGT ATG TCC A TAC CTG GAC ACT AAC CGT TGT GG Mm% mmR CAT GTC
TAT GCC TCC ATG AAT
I 1 I 1 1
GTC CAG GAC GGG GGG
GTG GCC TGG GAG ATC ACA ACT GGA AAG CAA TGT GCG GCG GGC TAC ATC AAA ACT GGG TTC GGC CTC --- --- --- --- --- --- GGG GCG G
CA ATC CAT AAG TGC ACT GGC TTG ACC TTT GGC --- --- --- TGT CGT --- CCT TBA GGC TCT GGT AAG TAA CCT TGG GAC CBT CTA --- --
- --- AGC TAA GAT ATC ATA GCT GAT AAA GGT TAA GCT GCA CGG TCA CAA TCT ACA AAA --- --- ACC CTC TCA AAC AGA ACT CAC CCA CAT
--- TAT CAT CAC CTC TGC TAA AGA CCG --- --- TCA ATA TGA TGG ATT ATA --- --- --- ACT --- CAC GAT CGG TAT CCA TTG GTA TAT
GCC TCC ATG AAT
CGT ATA TAA GCT TAA GCG CTC ACG CGC GCG ATT CAT CCA TTG ACA GTG CGT AGC TTG AGG GTC CTC CTT CGT TTG TAA GTA GAC TCT GAC C
GA CAA ACA CGC GCC ACA TAC GCT ATA AAA GGC CGT TAA TAT CAG CGT TCC GAG ATT CGA ATA GGT TGT GGT CGA GTG TGC GTA CTA CCG CT
G CTG GGG TAG AGA GTA TAC TAC AGT AGC CTT TGC ACT AAG CCT GTT TCC GAA CCA AAA TTT AGG GGG GGG GGA AAC --- CBA TGA ATT CAT
TGG GAT GGT CAG GGG GGC AGC TTA CCG TTG AGT AAT AAA AGT ATG TCC ATA TAC CTG GAC ACT AAC CGT TGT CGG --- --- CAT GTC GTC
CAG GAC GGG GGG
WRITING DNAs TO FILE: /root/.aspl/tmp/foo
GG FUNCTION TO SHOW DNA ALIGNMENT
DONE PROCESSING ggAlignDnaSeq(vl,manl,v2,man2, fragsize,3) -- -1-1-1-1-1-1
12:55 mmal: ~ # [] ~
v
cJ root : bash root : bash i

-F- Fig. 1.1.11 [Figure DNA Sequence of Two Men]
ASPL © 2024 by Bassem Jamaleddine

The elements of a group do not need to be the usual static data, as an element attributes can be
renewed when hooked to processes or tied to devices in a system that may change states. We will
see some examples in "ASPL by Examples" where the OSCILLATORGROUP defines attributes
that are tied to a device to collect data set; and another example using the BAYLEVELGROUP

file:///public/ASPLv1man/asplmanualv1r/img/mutant.aspl-img1.png
file:///public/ASPLv1man/asplmanualv1r/img/mutant.aspl-img.png

whose attributes are tied to sensors monitoring the water level between two bays. Figure FFFFF
shows a simulation when the water level between the two bays is critical.

BAYS12MON-img0.png

Fle Edt View Bookmarks Settings Help
1:56:29 root@nm0l /root aspl:6 > ks mean123 mtime aelm
ASPL:6> ks mean123 mtime aelm
1:56:29 root@nmol /root aspl:6 > [XITITIPENTSUIIETI]
astat = meanl23 mtime aelm
bStat = mean123 mtime aelm
1:56:36 rooténmél /root aspl:7 > f&'ks= CRITICAL BAY1 BAY2
ASPLi7> f&’ks= CRITICAL BAYL BAY2
1:56:36 rootémnol /root aspl:7 > [IECHTENCINFETMITNTNINE
There are 3 sets representing: CRITICAL BAY2 BAV1
EQUAL F) f1'equal pL CRITICAL BAY2 BAYL (<WATERLEVEL/> / 1706770555)
1706770555 mean123=above7feet mtime=2024-02-01 01:55:55 ae
1706770555 mean123=above7feet mtime=2024-02-01 01:55:55 ae
1706770555 mean123=above7feet mtime=2024-02-01 01:55:55 aelm=
CRITICAL 1 entries
BAY2 1 entries
BAYL 1 entries
DONE PROCESSING f&'ks= CRITICAL BAY1l BAY2
1:56:48 root@mn0l /root aspl:8 > f&'ks= WARN BAYL BAY2
ASPLi8> f&'ks= WARN BAYL BAY2
1:56:48 rooténn0l /root aspl:s > [EECNTENTTINTVFNTYE
are 3 sets representing: WARN BAY2 BAV1
[+ fa -- EQUAL F) fl'equal pL WARN BAY2 BAY1 (<WATERLEVEL/> / 1706770521)
FG=) 1706770521 mean123=5-6feet mtime=2024-02-01 01:55:21
fa=) 1706770521 mean123=5-Gfeet mtime=2024-02-01 01:55:21 aelm=
£ 1706770521 mean123=5-6feet mtime=2024-02-01 01:55:21 aelm=
[+ fa EQUAL F) fl'equal pL WARN BAY2 BAY1 (<WATERLEVEL/> / 1706770543)
1706770543 mean123=5-6feet mtime=2024-02-01 01:55:43 aelm=
- =2024-02-01 01:55:43 aelm=
[+ fa EQUAL F) fl'equal pL WARN BAY2 BAY1 (<WATERLEVEL/> / 1706770569)
1706770569 mean123=5-6feet mtime=2024-02-01 01:56:09 aelm=
fa=) 1706770569 mean1235-6feet mtine=2024-02-01 01:56:09 aelm=
f&=) 1706770569 mean123=5-6feet mtime=2024-02-01 01:56:09 aelm=
WARN 3 entries
BAY2 3 entries
BAYL 3 entries
DONE PROCESSING f&'ks= WARN BAY1 BAY2
1:56:57 rooténn0l /root aspl:9 > f&’ks= CRITICAL BAYL
ASPLi9> f&'ks= CRITICAL BAYL
1:56:57 root@mmol /root aspl:9 & ks= CRITICAL BAVL
There are 2 sets representing: CRITICAL BAV1]
-~ EQUAL F) f1'equal pL CRITICAL BAYL (<WATERLEVEL/> / 1706770542)
fi 1706770542 mean123=above7feet mtime=2024-62-01 01:55:42 aelm=
1706770542 mean123=above7feet mtime=2024-62-01 01:55:42 aelm=
= EQUAL F) fl'equal pL CRITICAL BAY1 (<WATERLEVEL/> / 1706770544)
06770544 mean123=above7fest mtine=2024-02-01 01:55:44 aelm=
1706770544 mean123=above7feet mtime=2024-02-01 01:55:44 aelm=
[ta - EQUAL F) fl'equal pL CRITICAL BAY1 (<WATERLEVEL/> / 1706770551)
i 1706770551 mean123=above7feet mtime=2024-02-01 01:55:51 aelm=
f 1706770551 mean123=above7feet mtime=2024-02-01 01:55:51 aelm=
T EQUAL F) fl'equal pL CRITICAL BAY1 (<WATERLEVEL/> / 1706770555)
1706770555 mean123=above7feet mtime=2024-02-01 01:55:55 aelm=
1706770555 mean123=above7feet mtime=2024-02-01 01:55:55 aelm=
-~ EQUAL F) fl'equal pL CRITICAL BAYL (<WATERLEVEL/> / 1706770578)
f&=) 1706770578 meanl23=above7feet mtime=2024-02-01 01:56:18 aelm=
f&=) 1706770578 mean123=above7feet mtime=2024-62-01 01:56:18 aelm=
CRITICAL § entries
BAYL 5 entries
DONE PROCESSING f&'ks= CRITICAL BAY1
1:57:14 rooténmel /root aspl:16 > f&'ks= CRITICAL BAV2
ASPLi10> f&'ks= CRITICAL BAY2
1:57:14 rootémnol /root aspl:10 > [IECETENCINECINEINE
s representing: G
[+ e EQUAL F) fl'equal pL CRITICAL BAY2 (<WATERLEVEL/> / 1706770535)
1706770535 mean123=above7feet mtime=2024-62-01 01:55:35 aelm=
1706770535 mean123=above7feet mtime=2024-62-01 01:55:35 aelm=
= : -- EQUAL F) fl'equal pL CRITICAL BAY2 (<WATERLEVEL/> / 1706770538)
fi=) 1706770538 mean123=above7feet mEime=2024-02-01 01:55:38 aelm=
f1 1706770538 mean123=above7feet mtime=2024-02-01 01:55:38 aelm=
= EQUAL F) f1'equal pL CRITICAL BAY2 (<WATERLEVEL/> / 1706770549)
06770549 mean123=above7feet mtime=2024-02-01 01:55:49 aelm=
f 1706770549 mean123=above7feet mtime=2024-02-01 01:55:49 aelm= =
C= root : aspl root : aspl @ root : aspl ASPL : aspl a shared : bash &l

-F- Fig. 1.1.12 [Figure Monitoring the Water Level Between Two Bays]
ASPL © 2024 by Bassem Jamaleddine

ASPL can do fuzzy set operations, these are simple operators like y&, yU, and y\ to get the fuzzy
intersection, union, and difference respectively.

With its powerful regular expression processor, ASPL can do shallow set operations. Just type
shallowed and you select the shallow matching that you desire.

A quick view of the shallow table module is shown below.
aspl:1 > shallowed
THE SHALLOW MATCHING IDENTIFIER TO SELECT THE ROUTINE WHEN SHALLOW SETOPS ARE USED:

IDENTIFIER DESCRIPTION
nothing matching nothing at all
starstar matching anything and everything
matchandmatch matching the ./subgroups and the element
matchormatch matching the ./subgroups or the element
elem matching just the element and ignoring ./subgroups
stem matching just the ./subgroups and ignoring the element
endjoinedeither matching from end of ./subgroups/element for either
begjoinedeither matching the beginning of ./subgroups/element for either
endstem matching just the ./subgroups from the end and ignoring the element
endstemeither matching just the ./subgroups from the end and ignoring the element (for either)
begstem matching from beginning of ./subgroups while ignoring the element
begstemeither matching from beginning of ./subgroups while ignoring the element (for either)
piecedstem matching at least one piece in ./subgroups while ignoring the element
> piecedstemelem matching the element and at least one piece in the ./subgroups
begelem matching from the beginning of element and ignoring ./subgroups (for either)
endelem matching from the end of element and ignoring ./subgroups (for either)
rgxelem matching the element anywhere and ignoring ./subgroups (for either)
prcrelem apply processor when matching the element anywhere and ignoring ./subgroups (for ei

file:///public/ASPLv1man/asplmanualv1r/img/BAYS12MON-img0.png

CURRENTLY LOADED piecedstemelem
WHEN SELECTING prcrelem AS THE SHALLOW MATCHING IDENTIFIER, ONE OF THE FOLLOWING
NODE PROCESSOR IDENTIFIER CAN BE SELECTED:

IDENTIFIER EVAL DESCRIPTION

transac 1 capture the element where word Transaction occured, ignore case
cla2ja 1 substitute .class with .java
ja2cla 1 substitute .java with .class
uc 1 upper case
lc 1 Tlower case
> asis 1 neutral without any change

CURRENTLY LOADED PROCESSOR asis

THE shallowedMatches PACKAGE CAN BE EDITED TO ADD MORE MATCHING SUBROUTINES.
SEE ASPL CONFIGURATION FILES FOR MORE ABOUT EDITING shallowedMatches PACKAGE.

Moreover ASPL can switch its set operation mode to do geometric set operations so that you can
detect intersecting polygons in 2D planes or on spheres.

Figure FFFFF shows the intersecting polygons in two planes. The intersecting polygons are
contrasted by showing their vertex in squares.

P12_90-both-and-intersect-img2.png
Figure P12_90-both-and-intersect-img2.png
full view

& rpr@aaq ¥ ?

ASPL GEQO-INTERSECTION FOR RANDOM TRIANGLES WITH HIGHLIGHTED OVERLAPPING TRIANGLES IN THE TWO 2D PLANES
0.2

T
"P1_2_Pl.dat" using 1:2
p2_1_f2.dat" using 12

i I : \
::Plz_gg‘_"rbl‘jat: using 1:2 \ | l\\\
90//o2.dat" usin 1“. - e, S

0.1

[T T U EESTSON/ SO0% SO

-0.15 -

02 i i i i i i i

0.0253738, -0.0284276

-F- Fig. 1.1.13 [Figure ASPL GEO-INTERSECTION FOR RANDOM TRIANGLES
WITH HIGHLIGHTED OVERLAPPING TRIANGLES IN THE TWO 2D PLANES]

ASPL © 2024 by Bassem Jamaleddine
P12_90-both-and-intersect-img1.png
PUBLISHER VERSION USING SQUARE POINTS FOR BLACK AND WHITE PRINT
Figure P12_90-both-and-intersect-img1.png

full view

file:///public/ASPLv1man/asplmanualv1r/img/P12_90-both-and-intersect-img2.png
file:///public/ASPLv1man/asplmanualv1r/img/P12_90-both-and-intersect-img1.png

& pgzeaaq y?

ASPL GEQ-INTERSECTION CONTRASTED WITH SQUARE POINTS FOR THE RANDOM TRIANGLES OVERLAPPING IN THE TWO 2D PLANES

0.2 T T T T
P12_50_Ldar using 1:2 : i
P12_90[2 dat using 12 —— ‘
P12 qubl dat" using 1.2 [:
90 /o2.dat" using 1: (] <
. \ =
015 - N -
—\/
N :
TRell Waes :
0.1 k- S S .. I - S 4

-0.05 [: -
/ /
o1k N, (0 N i il
0.15 - k il
ﬂ}. q :
0.2 i i i | i | i
0.2 -0.15 0.1 -0.05 0 0.05 01 0.15 0.2

0.0656771, -0.223420

-F- Fig. 1.1.14 [Figure ASPL GEO-INTERSECTION CONTRASTED WITH SQUARE
POINTS FOR THE RANDOM TRIANGLES OVERLAPPING IN THE TWO 2D
PLANES]

ASPL © 2024 by Bassem Jamaleddine

Figure FFFFF shows the intersecting polygons on two spheres, and figure FFFF shows the
intersects and differences between these polygons.

G12_170-all-with-intersect-img3D.png
Figure G12_170-all-with-intersect-img3D.png
full view

E @ a y?

ASPL GEO-INTERSECTION FOR RANDOM POLYGONS ON TWO SPHERES CONTRASTED WITH SQUARE POINTS IN 3D SPACE

"G1l2_Gl.dat" using 1:2:3 —8—
"Gl2_G2.dat" using 1:2:3 —8—
"Gl 2_Gl.dat* using 1:2:3
"G2_1_G2.dat" using 1:2:3

08
06

%—

view: 59,0000, 43,0000 scale: 1.00000, 1.00000

-F- Fig. 1.1.15 [Figure RANDOM POLYGONS OVERLAPPING ON TWO SPHERES
IN 3D SPACE]

ASPL © 2024 by Bassem Jamaleddine

file:///public/ASPLv1man/asplmanualv1r/img/G12_170-all-with-intersect-img3D.png

Refer to WARN: IN Introduction-to-ASPL.raw THE FOLLOWING Ref: CANNOT BE
RESOLVED

<Ref:-see section -chaptit "RANDOM POLYGONS ON THREE SPHERES" -ptt
"RANDOM POLYGONS ON THREE SPHERES" />

G12_170-both-all-img3D.png
Figure G12_170-both-all-img3D.png
full view

& rpr@aaq y?

RANDOM POLYGONS OVERLAPPING ON TWO SPHERES IN 3D SPACE WITH ASPL GEO-INTERSECTIONS GEO-DIFFERENCE

"G12_170_1.dat" using 1:2:3
"G12_170_2.dat" using 1:2:3
"G12_170_ol.dat" using 1:2:3 O
"G12_170_o2.dat" using 1:2:3 ©
"G2_1_G2.dat" using 1:2:3
"Gl 2_Gl.dat" using 1:2:3

wiew: 60,0000, 20,0000 scale: 1.00000, 1.00000

-F- Fig. 1.1.16 [Figure RANDOM POLYGONS OVERLAPPING ON TWO SPHERES
IN 3D SPACE WITH ASPL GEO-INTERSECTIONS GEO-DIFFERENCE]

ASPL © 2024 by Bassem Jamaleddine

Many of these examples are detailed in WARN: IN Introduction-to-ASPL.raw THE
FOLLOWING Ref: CANNOT BE RESOLVED
<Ref:-see section -chaptit "ASPL by Examples" -ptt "ASPL by Examples" />

Chapter Ref:ASPL by Examples

In addition the interpreter offers the ASPL scripting language so that you can enhance your
system with powerful commands. Consider the following script that shows the differences in JAR
archives. It can be called with a simple command jarcompare.aspl jarfile1 jarfile2.

[Top Text]

LISTING jarcompare.aspl ASPL Script jarcompare.aspl
(raw text)

1. #!/usr/bin/env aspl

2. #ENVARG= -groupingclass POSIX -wsname TRANSIENT -singlepass

3.

4. ; ;***
5. ;3 jarcompare.aspl

6. HH Compare two JAR archives

7. ;5 Copyright Ao 2024 Bassem W. Jamaleddine

8. i

9 . ; ;***
10.

11. endScriptIfShellArgsLessThan 2

12.

13. ;;DEF FN cmp2sets := {gU {g\, %%1 %%2}{g\, %%2 %%1}{g&, %%1 %%2}}

14.

15. timeout 60

16. displayoff

17. dl = ggjar(jarfile,$1,calchksum,1,calentropy,1)

18. d2 = ggjar(jarfile,$2,calchksum,1,calentropy,1)

19.

20. displayon

21. ks chksum size ffl

file:///public/ASPLv1man/asplmanualv1r/img/G12_170-both-all-img3D.png
file:///public/ASPLv1man/asplmanualv1r/misc/jarcompare.aspl.numln.txt

22. b1 PULANt AR

23. ;iprint # SHOWING SET COMPARISONS BETWEEN $1 and $2

24, 33 Print #A##HH IR

25. ;+FN cmp2sets(dl,d2)

26. print #HHHHHHHHHHH

27. print # SHOWING SET INTERSECTION WITH DIFFERENT CHECKSUMS BETWEEN $1 and $2

28. print #HHHHHHHHHH

29. f& c~ dl d2

30. print #HHHHHHHHHHH

31. print # SHOWING SET SIMILARITY BETWEEN $1 and $2

32. print #HHHHHHHHHH

33. sim dl d2

34. println

35.

36. endscript

37.

38. __END__

39.

40. $00 compares two JAR archives

41.

42. $00 must be followed by the names of two JAR archives

43.

44, Example:

45. To compare the two JAR archives /tmp/TX/27238-tx.jar and
/tmp/TX/38141-tx.jar

46. $00 /tmp/TX/27238-tx.jar /tmp/TX/38141-tx.jar

47.

ASPL © 2024 by Bassem Jamaleddine

Figure FFFFF shows the result of jarcompare.aspl when comparing two JAR achives. Notice how
the colliding names of the classes have been detected and their different checksums is displayed
in red color.

Figure jarcompare.aspl-img.png

full view

Fle Edit View Bookmarks Settings Help

00:58 mmO1: /opt/ASPLV1.00/shared # jarcom pare.aspl /tmp/TX/38478-tx. jar /tmp/TX/45240-tx. jar
TIMEOUT IS SET TO 60 SECONDS
DONE PROCESSING d1 = ggjar(jarfile, /tmp/TX/38478- tx. jar, calchksum, 1, calentropy, 1)

DONE PROCESSING d2 = ggjar(jarfile, /tmp/Tx/45240- tx. jar, calchksum, 1, calentropy, 1)

astat = chksum size ffl
bstat = chksum size ffl

SHOWING SET INTERSECTION WITH DIFFERENT CHECKSUMS BETWEEN /tmp/TX/38478-tx.jar and /tmp/TX/45240-tx. jar

There are 2 sets representing: /tnp/IX/38478-tx. Jar /tnp/TX/45240- tx. jar]

CHANGED F) f1'

IFEST.MF chksu

-] MANIFEST.HF chks.
F)

LocalTransactionCoordinator.class chksums:
LocalTransactioncoordinator . class chk:
-~ CHANGED F) f1'changed pL /tmp/Tx/3:

fa~) UoWManager.class ch:

/tmp/TX/38478-tx. jar 6 entries
/tmp/TX/45240-tx. Jar 6 entries

DONE PROCESSING f&'c~ d1 d2

SHOWING SET SIMILARITY BETWEEN /tmp/TX/38478-tx.jar and /tmp/TX/45240-tx. jar

vs

subsetl vs subset2
/tmp/TX/45240-tx. jar(2.d2) | /tmp/Tx/38478-tx. jar(1.d1) 0.91937

DONE PROCESSING sim d1 d2

01:04 mnO1: /opt/ASPLV1.00/shared # []

(WSS ="

O . shared : aspl - root : bash

-F- Fig. 1.1.17 [Figure Comparing Two JAR Archives]
ASPL © 2024 by Bassem Jamaleddine

Naturally the ASPL interpreter allows you to do set operation interactively at its prompt and the
user can repeat the same operations shown in the script at the ASPL prompt. Writing scripts with
ASPL is simple as you will see in Chapter "ASPL Scripts".

ASPL uses the notion of grouping class and treats algebraic groups per their meta data. The
grouping class specially characterizes the set of data being treated.

ASPL Elements Class Containment is discussed in Chapter "ASPL A DETAILED VIEW".

ASPL is premier set calculator uniquely identified with its powerful programming of set elements
and their attributes: ASPL element attributes can be statically defined, or dynamically updatable by
anonymous subroutines, or refreshable with new data when tied to generative devices. When a
change is detected in an element, ASPL archives the variable, and you can use set operators to
display what has changed.

file:///public/ASPLv1man/asplmanualv1r/img/jarcompare.aspl-img.png

