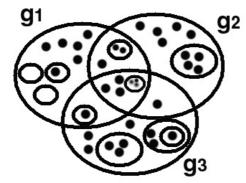
1-1 Introduction to ASPL

ASPL, A Set Programming Languages, is a *setadic calculator*. The word *setadic* is introduced by the author and is specifically used herein to refer to a calculator whose symbolic operators are termed *setadic operators* and all of which perform algebraic set operations on datasets. These operators always precede their operands.

A **setadic calculator**, is a software appliance that takes structured data objects as input and breaks them into their constituent containment pathes so that they can be analyzed according to their structural components. ASPL maps algebraic data groups into containment pathes, and the appliance offers setadic operators to aggregate and to determine the relationships between their constituent elements. It renders them into a form suitable to be comprehended visually by the user before displaying their relationships on the user terminal.

Therefore, ASPL is an interactive software appliance that is started on the UNIX shell command prompt. Once ASPL is installed on the computer system, the user can start using it interactively to do sophisticated set operations, or can run ASPL scripts on the system where ASPL is installed. The ASPL interpreter provides a powerful and intuitive interactive computing facility that shares some similarities to a classic calculator. However, ASPL operators are set operators, and its variables are set variables. For the operator using ASPL, all variables are typeless and the commands are short and simple mnemonics that are easy to remember. ASPL does not require a database or any third party libraries. The program runs on UNIX systems where the standard Perl interpreter is available.

Your ASPL interpreter can perform a large number of sophisticated set operations using the


preprogrammed set operators. The calculation results may then be assigned to variables called set

variables. The set variables are presented as arguments to set operators to do further calculations. In addition, when you start the ASPL interpreter you are assigned a named workspace. It is this named workspace that is used by the ASPL instance you started to save the results and the variables of all your calculations. ASPL uses a stack to save the results performed by its operations, and save the variables in internal symbol tables. ASPL variables are all global variables, and when persistence is enabled these global variables are all shared by users connecting to the same workspace; in which case if two or more ASPL instances are started with the same named workspace then all variables are being shared globally by all ASPL instances. The workspace directory should be available to all instances.

ASPL path containment can span multiple groups and subgroups along their elements. The following figure shows groups, subgroups, and their elements. There are three groups labeled g1, g2, and g3.

Note: ASPL groups image to be further explained in next Chapter using RANDONEBIT workspace

full view

Groups g1 g2 g3, their subgroups, and their elements.

one or more subgroups or subsets. The elements within the groups and their subgroups are marked with black dots.]

ASPL © 2024 by Bassem W. Jamaleddine

The labeled groups can be assigned to ASPL variables. For instance, v1, v2, and v3 are three ASPL variables that represent the groups g1, g2, and g3 respectively. ASPL setadic operators can then perform set operations on these variables. For instance to get the set union of all three groups: **gU v1 v2 v3**, to get their set intersection: **g& v1 v2 v3**, to get their set difference: **g\ v1 v2 v3**, and to get their set partitions: **gP v1 v2 v3**.

Notice the mnemonic of these four basic set operators: gU, gk, gk

Instruction	Operation
gU v1 v2 v3	get the group union considering the subrgoups and elements
g& v1 v2 v3	get the group intersection considering the subrgoups and elements
g∖ v1 v2 v3	get the group difference considering the subrgoups and elements
gP v1 v2 v3	partition the groups, subgroups, and their elements

In a functional way these operations can also be further explained:

Instruction	Operation
gU v1 v2 v3 g& v1 v2 v3 g\ v1 v2 v3	Union(v1, Union(v2,v3)) Intersection(v1, Intersection(v1,v2)) Difference(v1, Difference(v2,v3)
gP v1 v2 v3	Partition(v1,v2,v3)

The subject denoted with the 'g' is to consider both the subgroups and elements in their respective groups. However, if the subject is only to do the operations on the subgroups then one can use dU, d&, d\ and dP. Therefore to get the set union of *the subgroups only* of all the three groups: dU v1 v2 v3, to get their set intersection: dk v1 v2 v3, to get their set difference: d v1 v2 v3, and to get their set partitions: dP v1 v2 v3.

One can look into the elements of the groups only (excluding the subgroups) by using fU, f&, f\ and fP. Therefore to get the set union of *the elements only* of all three groups: **fU v1 v2 v3**, to get their set intersection: **f& v1 v2 v3**, to get their set difference: **f\ v1 v2 v3**, and to get their set partitions: **fP v1 v2 v3**.

For ASPL this is done through its *set builder and the setadic operation*. For example, the intersection of the elements found in v1, v2, and v3, denoted with **f& v1 v2 v3** is to parse (or humanly read) the information left to right: the set operator comes first (hence the meaning of

setadic operator) then followed by the identifiers (representing the labeled groups or datasets). This is something that the reader is accustomed to from basic schooling, and can be seen through ASPL setbuilder by typing **setbuilder gU v1 v2 v3** at the ASPL prompt:

```
aspl> setbuilder gU v1 v2 v3
```

```
QUOTIENT SET BUILDER
```

```
{gU v1 v2 v3} <=> gU v1 v2 v3
Detailed view:
{gU v1 v2 v3} <=>
gU v1 v2 v3
| | | +----> set-variable
| | +----> set-variable
+----> set-variable
+----> get the subgroups and the elements union
Set builder syntax is read from left to right, or from bottom to top.
```

All ASPL setops are setadic: they take a setop followed by set variables.

As for the intersection, one can type setbuilder g& v1 v2 v3 at the ASPL prompt:

aspl> setbuilder g& v1 v2 v3

QUOTIENT SET BUILDER

{g& v1 v2 v3} <=> g& v1 v2 v3 Detailed view: {g& v1 v2 v3} <=> g& v1 v2 v3 | | | +----> set-variable | | +----> set-variable | +----> set-variable +----> get the subgroups and the elements intersection

Set builder syntax is read from left to right, or from bottom to top. All ASPL setops are setadic: they take a setop followed by set variables.

Each element within a group or subgroup can be further described and characterized by a set of attributes that are attached to it, and comparing it to another element is therefore based on these attributes. In ASPL every element has a checksum attribute, and the language provides a feature to subordinate setadic operators with a conditional predicate. Repeating the previous operation g& v1 v2 v3 but we want to get only these subgroups and elements that have different checksums: **setbuilder g&`c v1 v2 v3**

```
aspl> setbuilder g&`c~ v1 v2 v3
```

QUOTIENT SET BUILDER

{g&`c~ v1 v2 v3} <=> g&`c~ v1 v2 v3 Detailed view:

{g&`c~ v1 v2 v3} <=>

g&` c~ v1 v2 v3
| | | | +----> set-variable
| | | +----> set-variable
| | +-----> set-variable
| | +-----> have different checksums
| +-----> such that
+-----> get the subgroups and the elements intersection

Here we used the acute backtick $\hat{}$ followed by a predicate. ASPL refers to this backtick simply with the word 'tick' and many of ASPL set operators can be ticked with specific predicates. For example, in the above example the operator is ticked with the predicate saying "when checksums are differents" $g\&c\sim$.

In general, we are also accustomed to the forward slash, called a stroke or the solidus symbol /, that may follow a set operator to depict a quotient relation, and in ASPL this is called *stroking a set operator*. In the following example, the group intersection operator (g&) is being stroked with the quotient relation r3. Notice that the stroke is directly followed by a tilde then the relation r3. r3 has been defined by the user but expanded here as frx=.*, $mra \sim$ (that is saying to match the elements with regular expression .*\$ and whose mtime attribute differ).

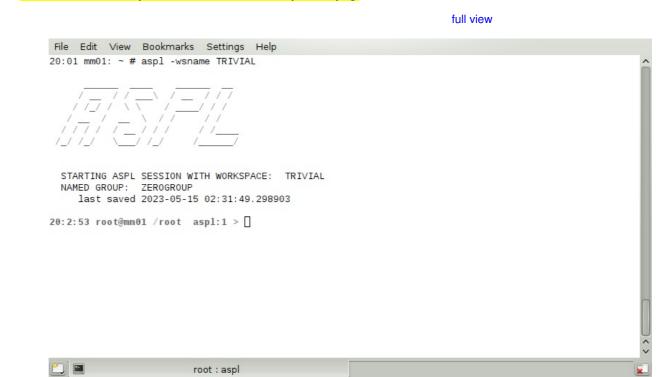
aspl> setbuilder g&/~r3 v1 v2 v3

QUOTIENT SET BUILDER

{g&/~r3 v1 v2 v3} <=> g&/frx=.*\$,mtm~ v1 v2 v3 Detailed view: {g&/~r3 v1 v2 v3} <=> g& / frx=.*\$,mtm~ v1 v2 v3 | | +---> set-variable | +----> set-variable +----> set-variable Ι +-----> have different make times -----> file name regular expression +-----> stroking the Quotient Relation +-----> get the subgroups and the elements intersection

The definition of r3 was performed with the command shown below and at any time the user can type q to display the quotient relation table:

This is equivalent to typing g&`mtm~ v1 v2 v3 and in this particular case all the following three commands are equivalent:


```
aspl> g&/~r3 v1 v2 v3
aspl> g&/frx=.*$,mtm~ v1 v2 v3
aspl> g&`mtm~ v1 v2 v3
```

In this book the ASPL prompt is denoted with **aspl>** and the UNIX shell prompt is represented with the hash **#** symbol.

See appendix AAAAA on how to install ASPL on your UNIX system.

■ ASPL Building Blocks

Note: ASPL Startup TRIVIAL ASPLv1.00-startup-trivial.png

-F- Fig. 1.1.2 [ASPL Startup TRIVIAL][ASPL Starting with TRIVIAL workspace]

ASPL © 2024 by Bassem W. Jamaleddine

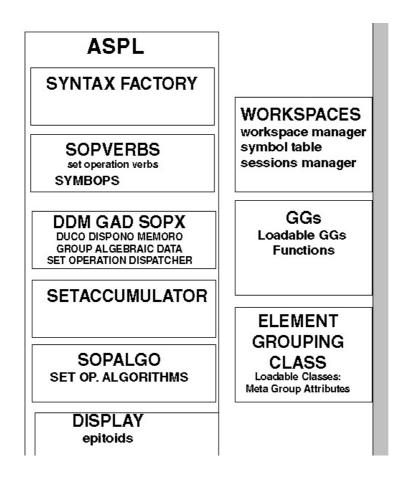
(* footnote: An interpreter typically has it own virtual machine, but ASPL does not. The ASPL interpreter is built on top of pure Perl interpreter and it uses the Perl powerful virtual machine in executing its tasks.)

The TRIVIAL workspace is available with every ASPL distribution, and its grouping class is the ZEROGROUP which contains the bare information that is required by any grouping class in ASPL. The command **wid** displays the current workspace being loaded and its up time, and the command **egCwhoami** pings its grouping class container. Both commands are shown in Figure FFFF.

Note: ASPL Startup TRIVIAL ASPLv1.00-startup-trivial.png

File Edit View Bookmarks Settings Help 20:19 mm01: ~ # aspl -wsname TRIVIAL STARTING ASPL SESSION WITH WORKSPACE: TRIVIAL NAMED GROUP: ZEROGROUP last saved 2023-05-15 02:31:49.619851 20:19:42 root@mm01 /root aspl:1 > wid 6 answers enswers 0 unswers 0 operations 6 uptime 0 days 0 hours 0 minutes 1 seconds TRIVIAL 0 days 0 hours 0 minutes 1 seconds 20:19:44 root@mm01 /root aspl:2 > egCwhoami >>>>>>>> AM ZEROGROUP<<<<<<>> being called here at proc_sub_whoami BRIDGE=/opt/ASPLv1.00/BRIDGE ASPL1_00_BRIDGE=/opt/ASPLv1.00/BRIDGE ASPL1_00_HOME=/opt/ASPLv1.00 ASPL/Groupings/Elements/ZER0GR0UP/Enode.pm /opt/ASPLv1.00/BRIDGE/ASPL/Groupings/Elements/ZER0GR0UP/Enode.pm ASPL::Groupings::Elements::ZEROGROUP::Enode LINE#9 caller: ASPL::Groupings::Helper::Enode ASPL::Groupings::Elements::ZEROGROUP::Enode LINE#18 caller: ASPL::Groupings::Elements zisFn0=ASPL::Groupings::Elements::ZER0GR0UP::Enode::proc_sub_whoami zisFn=ASPL::Groupings::Elements::ZEROGROUP::Enode::__ANON_ self=ASPL::Groupings::Elements::ZEROGROUP::Enode=HASH(0x7d800d0) arg= Ksumatt= ARRAY(0x7d829c8) = mtime chksum entropy Bnode= ARRAY(0x7a9e028) = mtime aelm Enode= ARRAY(0x78d5378) = mtime aelm chksum entropy ppdd ffl dosi confess = 0 20:19:47 root@mm01 /root aspl:3 > root : aspl

-F- Fig. 1.1.3 [ASPL Startup TRIVIAL][ASPL Starting with TRIVIAL workspace]


ASPL © 2024 by Bassem W. Jamaleddine

ASPL has eight major components:

- the syntax factory
- · the set semantic processor
- · the verbs transformer and dispatcher
- the set accumulator
- the set algorithmic processor
- the dynamically loadable container for the grouping classes
- the dynamically loadable container for generative functions
- · the workspace manager for symbols and sessions management

These are shown in Figure FFFFF, and are also reflected in ASPL layout directories shown in Figure FFFFF.

Note: ASPL building blocks image aspl-block-old.png

[Top Text]

-L- Listing. 1.1.1 [ASPLv1.00 Directory Tree ASPL-tree0.dir.numl][ASPLv1.00 Directory Tree]

(raw text)

1.	ASPLv1.00
2.	bin
3.	BRIDGE
4.	ASPL
5.	BAYLEVELGROUP
6.	` Feeder
7.	EmStatv2
8.	` Cexec
9.	EmVectors
10.	Formattings
11.	GGs
12.	GEO3TRI
13.	` CTXSETOP
14.	OSCILLATORSGROUP
15.	` Feeder
16.	` SYSENVGROUP
17.	` Feeder
18.	Groupings
19.	Elements
20.	ONEGROUP
21.	` ZEROGROUP
22.	Helper
23.	` stubs
24.	` MockedGroupings
25.	` MockedObjects
26.	` bin
27.	etc
28.	lib
29.	ASPL
30.	ASPLSNTX
31.	Directory
32.	` DDM
33.	DISPLAY
34.	MemUsage
35.	PRIMITIVES
36.	SETACCUMULATOR
37.	SOPALGO
38.	SOPVERBS
39.	SOPX
40.	SYMBOPS

```
      41.
      |
      `-- FTX_VERBPROCESSORS_BUILDER

      42.
      |
      `-- Utilities

      43.
      |
      `-- Simple

      44.
      |-- license

      45.
      `-- shared

      46.
```

[Top Text]

-L- Listing. 1.1.2 [ASPLv1.00 Directory Tree ASPL-tree0.dir.numl][ASPLv1.00 Directory Tree]

(raw text)

1.	ASPLv1.00
1. 2.	ASPLVI.00
3. 4.	BRIDGE
	ASPL
5.	BAYLEVELGROUP
6.	` Feeder
7.	EmStatv2
8.	` Cexec
9.	EmVectors
10.	Formattings
11.	GGs
12.	GEO3TRI
13.	` CTXSETOP
14.	OSCILLATORSGROUP
15.	` Feeder
16.	` SYSENVGROUP
17.	` Feeder
18.	Groupings
19.	Elements
20.	ONEGROUP
21.	` ZEROGROUP
22.	Helper
23.	` stubs
24.	` MockedGroupings
25.	` MockedObjects
26.	` bin
27.	etc
28.	lib
29.	ASPL
30.	ASPLSNTX
31.	Directory
32.	` DDM
33.	DISPLAY
34.	MemUsage
35.	PRIMITIVES
36.	SETACCUMULATOR
37.	SOPALGO
38.	SOPVERBS
39.	SOPX
40.	SYMBOPS
41.	` FTX_VERBPROCESSORS_BUILDER
42.	` Utilities
43.) Simple
44.	license
45.	` shared
46.	

ASPL © 2024 by Bassem Jamaleddine

Starting ASPL in verbose mode will also reflect where ASPL loads its components at startup as shown in Figure FFFFF.

ASPL Startup on the UNIX Shell Prompt Explained

File Edit View Bookmarks Settings Help 02:04 root@vienna: ~ # aspl WS1 -verbose

ASPL PROGRAM INSTALLED IN /opt/ASPLv1.00

ASPI # 1.00

workspace WS1 will be loaded from this repository ASPL WORKSPACE WILL IGNORE SESSIONS MANAGEMENT

ASPL CLI # 1.00

PROGRAM DIRECTORY: /opt/ASPLv1.00 GROUPING CLASS NAME: POSIX WORKSPACE REPOSITORY: /root/.aspl/WSP/WORKSPACES1 WORKSPACE NAME: WS1 LAST SAVED: 2023-02-21 02:37:07.655478 LELEMENT GROUPINGS CLASS: /opt/ASPLv1.00/BRIDGE/ASPL/Groupings LOADABLE GGs DIRECTORY: /opt/ASPLv1.00/lib/ASPL/GGs DDM CONFIGURATION: /opt/ASPLv1.00/etc/ddm.conf DDM POOL: /root/.aspl/dev/DDM_DATA MEMORY USED: 344408K

ASPL WORKSPACE VARIABLES HAVE QUOTIENT-VARIABLES ENABLED

DISPLAY MODE: 2 LOGGING TO STDOUT PERSIST VARIABLES IS OFF RUN ASPL SCRIPT IN TWO PASSES VARIABLES FREELY ASSIGNED

STARTING ASPL SESSION WITH WORKSPACE: WS1 NAMED GROUP: POSIX last saved 2023-02-21 02:37:07.667119

aspl:1 2:4:28>

Grouping class POSIX defines the metadata attributes and loaded from this directory (not available with bridgeless)

GGs functions are loaded from this directory

-F- Fig. 1.1.5 [ASPL Startup on the UNIX Shell Prompt Explained]

ASPL © 2024 by Bassem Jamaleddine

A user interacting with ASPL places a setadic operation to the interpreter. The interpreter submits it to the syntax factory, analyzes it, builds its object, and locates its verb. It then dispatches the object to its algorithmic set processing agent after fetching its symbols from either the answer stack or the symbol table. The result of the processed expression is finally saved in the symbol table, pushed on the top of the stack, and displayed on the terminal. The simplest way to see the flow of ASPL processing is to enable the tracing facility of ASPL (see Appendix CCCCC).

ASPL Commands with asplcmd

At this point we introduce the **asplcmd** command because it is a quick way to execute short ASPL statements through the UNIX shell prompt.

You can direct ASPL to execute some of its statements by issuing **asplcmd** at the shell prompt followed by a a string. If the string is more than a word then it must be quoted since it is passed like a single argument to asplcmd. Without going into details on how asplcmd works, as this will become clear after reading the chapter "ASPL Scripts", it is used here to facilitate some explanation on ASPL displayable output.

The following command compares the datasets saved in the variable mg123 of workspace RANDONEBITMIX.

asplcmd 'load RANDONEBITMIX;gU mg123'

This command causes ASPL to load the workspace RANDONEBITMIX, then issues the gU to display the group unions found in the datasets saved in the variable mg123. The semicolon is used to separate the two statements. Observe the output showing the groups, subgroups, and elements. The next section explains the symbolic schemes and colors used by ASPL when displaying its output.

The following command compares two variables a2 and a7 that has been saved in workspace WS1.

asplcmd 'load WS1; ks mtime chksum ppdd; gU a2 a7'

There are three statements separated by semicolons in this string passed to ASPL. The first statement load the workspace WS1, the second statement set the ks attribute vector to mtime chksum ppdd, and the third statement display the group union of the datasets saved in a2 and a7.

When you pass a string to asplcmd the interpreter will parse the string and execute its contents then exit.

ASPL Symbolic Shemes and Colors

ASPL is not a GUI application and does not require any GUI API, it uses plain ASCII characters for its symbolic operators and identifiers, and uses the ANSI colors scheme provided by the UNIX terminal. (* footnote: APL users should be alarmed as there is no APL Greek symbols in here!) At any time you can start ASPL at the UNIX shell prompt of a terminal (or even on a dumb terminal) or an X Window session. Figure FFFF-1 shows ASPL started in a KDE session.

Because the set comparison operators classify data into three basic categories: intersection, union, and difference, then it is recommended to display the output using three different colors. In addition, since a group may contain subgroups and elements, then some symbolic scheme is needed to show the group differences along these colors. ASPL uses both colors and symbolic schemes to facilitate the readability of its output. Using the ANSI colors that is readily available on all UNIX terminal, and compounding it with symbolic schemes will help to distinguish when subgroups and elements are unique, equal, or different.

Figure FFFF shows the partial result of the command discussed in the previous section:

asplcmd 'load RANDONEBITMIX;gU mg123'

Recall that there is no restriction on the name of subgroups and elements, that is an element name can be the subgroup name in another group, and even can be the subgroup name in the same group (as long as it is at different level). This is similar to the UNIX filesystem where in the same directory you cannot have a directory and a file using the same name.

To understand the meaning of ASPL colors and symbolic schemes let's go over figure FFFF where the output has been labeled at five points as follow:

(1) gU: f!=) this is the gU of g1 g2 g3 where a difference in the element has been detected: it is the subgroup df2 that was detected in the subgroup ./df2/df1

- 2 gU: +f) element df3 only in subgroup ./df2/df1/ in group g3
- ③ gU: d!=) subgroup df2 in subgroup ./df2/ in all groups g1 g2 and g3 but they differ
- ④ gU: f==) element df1 in subgroup ./df2/df2/ in all groups g1 g2 and g3 and is the same
- ⑤ gU: g!=) mixed as df3 is ./df2/ is subgroup in groups g1 g2 and it is an element in group g3

Notice also the colors: equality shown in green, difference shown in red, and a loner shown in gray.

Note: ASPL Symbolic Shemes and Colors g1g2g3-12345.png

full view

(1) Element df2 in subsubgroup	all fl=)	** CHANGED F) fl changed pL g1 g2 g3 (<./df2/df1/> / df2)
(1) $\frac{1}{1/df^2/df^1/of g1}$ g2 and g3		df2 bit=1 chksum=1 entropy=1 ppdd=g1 ff1=./df2/df1/df2 aelm=mti
	aU f~)	
but differ	gU f~)	
Ellement df3 only in	qU:+f)	
	aU f+)	df3 bit=1 chksum=1 entropy=1 ppdd=g3 ffl=./df2/df1/df3 aelm=mti
(2) subsubgroup df2/df1/ in g3	qU:d!=)	
(2) Subsubgroup df2 in	qU d~)	
(3) subgroup ./df2 in all	gU d~)	df2 bit=1 chksum=1 entropy=1 ppdd=g2 ffl=./df2/df2 aelm=mtime(1
three groups but differ	gU d~)	df2 bit=0 chksum=0 entropy=1 ppdd=g3 ffl=./df2/df2 aelm=mtime(1
Element dfl in auhauhanaun	gU: f==)	** EQUAL F) fl equal pL g1 g2 g3 (<./df2/df2/> / df1)
(4) $\frac{1}{\frac{df2}{df2}}$ of g2 g2 and g3	gU f=)	df1 bit=1 chksum=1 entropy=1 ppdd=g1 ffl=./df2/df2/df1 aelm=mti
	gU f=)	df1 bit=1 chksum=1 entropy=1 ppdd=g2 ffl=./df2/df2/df1 aelm=mti
and being equal	gU f=)	df1 bit=1 chksum=1 entropy=1 ppdd=g3 ffl=./df2/df2/df1 aelm=mti
**		** CHANGED F) fl changed pL g1 g2 g3 (<./df2/df2/> / df2)
		df2 bit=0 chksum=0 entropy=1 ppdd=g1 ffl=./df2/df2/df2 aelm=mti
	gU f~)	df2 bit=1 chksum=1 entropy=1 ppdd=g2 ff1=./df2/df2/df2 aelm=mti
	gU f∼)	
**		** EQUAL F) fl equal pL g1 g3 (<./df2/df2/> / df3)
	gU f=)	
Mixed df3 in subgroup		df3 bit=0 chksum=0 entropy=1 ppdd=g3 ffl=./df2/df2/df3 aelm=mti
(5) $\frac{1}{2}$ /df2/ of g1 g2 and g3; it	gU:g!=) aU d~)	<pre>** MIXED M) mixed both pL g1 g2 g3 (<./df2/> / df3) df3 bit=0 chksum=0 entropy=1 ppdd=g1 ffl=./df2/df3 aelm=mtime(1</pre>
	gU d~) gU d~)	df3 bit=0 chksum=0 entropy=1 ppdd=g1 ff1=./df2/df3 aelm=mtime(1 df3 bit=0 chksum=0 entropy=1 ppdd=g2 ff1=./df2/df3 aelm=mtime(1
is a subsubgroup in g1 and g2	gU d~) gU f~)	df3 bit=0 chksum=0 entropy=1 ppdd=g3 ff1=./df2/df3 aelm=mtime(1
while it is an element in g3		** EQUAL F) fl equal pL g1 g2 (<./df2/df3/> / df1)
	gU f=)	df1 bit=1 chksum=1 entropy=1 ppdd=g1 ff1=./df2/df3/df1 aelm=mti
	gU f=)	df1 bit=1 chksum=1 entropy=1 ppdd=g2 ff1=./df2/df3/df1 aelm=mti
**		** EQUAL F) fl equal pL g1 g2 (<./df2/df3/> / df2)
	gU f=)	
	gU f=)	df2 bit=0 chksum=0 entropy=1 ppdd=g2 ff1=./df2/df3/df2 aelm=mti
**		
	gU f+)	df3 bit=1 chksum=1 entropy=1 ppdd=g1 ffl=./df2/df3/df3 aelm=mti
**	(==b:Up	** EQUAL D) dir equal pL g2 g3 (<./> / df3)
	gU d=)	
	gU d=)	df3 bit=1 chksum=1 entropy=1 ppdd=g3 ffl=./df3 aelm=mtime(17078

-F- Fig. 1.1.6 [SYMBOLIC SHEMES AND COLORS][ASPL Symbolic Shemes and Colors]

This example might be confusing, but it was selected on purporse to make it clear that the label names of subgroups and elements are immaterial to ASPL algorithmic routines.

Let's take a look at another practical example where a file name and a directory name might intersect on the UNIX filesystem. Assuming you have access to the /tmp directory, issue the following commands on your shell prompt:

- # mkdir /tmp/foodir1
- # mkdir /tmp/foodir1/abc
- # mkdir /tmp/foodir2
- # touch /tmp/foodir2/abc
- # asplcmd "createworkspace TRANSIENT POSIX;ggdir(dir,/tmp/foodir1);ggdir(dir,/tmp/foodir2);gU"

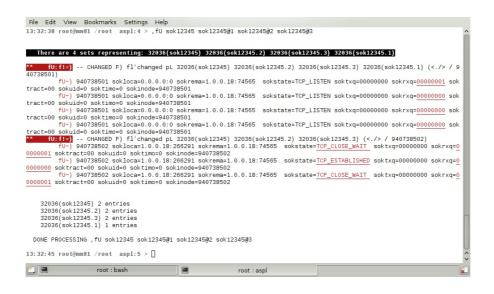
The first two commands create a directory and a subdirectory /tmp/foodir1 and /tmp/foodir1/abc respectively, and the next two commands create a directory and a file /tmp/foodir2 and /tmp/foodir2/abc respectively. The last command call ASPL to show the difference between the two directories /tmp/foodir1 and /tmp/foodir2.

The statement *createworkspace TRANSIENT POSIX* tells ASPL to load the temporary TRANSIENT workspace with element grouping class POSIX. The next statement ggdir(dir,/tmp/foodir1) tells ASPL to call the grouping function ggdir() on directory /tmp/foodir1. These statements will become clearer in the next chapters. For now, if you have issued these command succeffully then you are already using ASPL.

The result of comparing the comparing the directories is shown below: **Note: Example** comparing a file and a subdirectory that have the same name foodir-commented.png

full view

-F- Fig. 1.1.7 [Example comparing a file and a subdirectory that have the same name]


ASPL © 2024 by Bassem W. Jamaleddine

Appendix DDDD shows a summary of ASPL symbolic schemes and how the user can edit the color configuration settings.

Why do you need to use ASPL

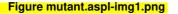
There are myriad reasons why you need to use the ASPL interpreter: to detect and highlight changes of systemic data in a UNIX cloud environment, to validate configuration data in a UNIX cluster, to resolve collision of class names in JAR archives, to compare analogous PATH across systems, etc. The following figure shows the result of a UNIX system whose socket has changed states:

Figure monitor-socket-state.png

-F- Fig. 1.1.8 [Figure Monitoring UNIX System Socket State]

ASPL © 2024 by Bassem Jamaleddine

Figure randomdice.aspl-900.png


Furthermore one can use ASPL to do simulation of players throwing dice on a crap table. Figure FFFFF shows the result of the simulation of players tossing dice: find the event when all the three players have the same outcome.

full view File Edit View Bookmarks Settings Help 01:34 mm01: ~ # randomdice.aspl 900 SIMULATION FOR 3 PLAYERS THROWING 900 TIMES DICE ON A CRATABLE DONE PROCESSING p1 = ggdice(player,player1,throws,900,die1trials, 5 \$2,die2trials, 3 \$3) DONE PROCESSING p2 = ggdice(player,player2,throws,900,die1trials, 5 \$2,die2trials, 3 \$3) DONE PROCESSING p3 = ggdice(player,player3,throws,900,die1trials, 5 \$2,die2trials, 3 \$3) \$ SHOW THE THROW NUMBERS WHEN ALL 3 PLAYERS HAVE ABSOULTELY THE SAME OUTCOME There are 3 sets representing: player3 player2 player1 Fee] -- EQUAL F) f1'equal pL player3 player2 player1 (<throw573/> / dice) fUe] dice faces=22 face1=3 face2=2 chksum=8 entropy=5.170 ppdd=player3 ff1= fUe] dice faces=32 face1=3 face2=2 chksum=8 entropy=5.170 ppdd=player1 ff1= fUe] dice faces=32 face1=3 face2=2 chksum=8 entropy=5.170 ppdd=player1 ff1= aelm=p. aelm=p. player3 1 entries player2 1 entries player1 1 entries DONE PROCESSING fU'ks= p1 p2 p3 # SIMILARITY WHEN ALL 3 PLAYERS HAVE ABSOULTELY THE SAME OUTCOME player3(3.p3) | player1(1.p1) player2(2.p2) | player1(1.p1) player2(2.p2) | player3(3.p3) player3(3.p3) | player1(1.p1) | player2(2.p2) | player1(1.p1) | player2(2.p2) | player3(3.p3) | DONE PROCESSING sim'fflz p1 p2 p3 There are 3 sets representing: player3 player2 player1
 0:001
 -: EQUAL F) fl'equal pL player2 player2 player1 (cthrox573/ flu) dice faces=22 facel=3 face2=2 chsume entropy=5.170 ppdd=; flu) dice faces=22 facel=3 face2=2 chsume entropy=5.170 ppdd=; flu) dice faces=22 facel=3 face2=2 chsume entropy=5.170 ppdd=; plat=:--cHNMEDF F] flchanged pL player2 player2 player1 (cthrox flu) dice faces=13 facel=1 face2=2 chsume3 entropy=5.170 ppdd=; flu) dice faces=13 facel=2 face2=2 chsume3 entropy=5.170 ppdd=; flu) dice faces=14 facel=2 face2=2 chsume3 entropy=5.170 ppdd=;
 dice) er3 ffl= er2 ffl= er1 ffl= aelm=p aelm=p aelm=p aelm=p player3 2 entries player2 2 entries player1 2 entries DONE PROCESSING fU'c= p1 p2 p3 # SIMILARITY WHEN ALL 3 PLAYERS HAVE SAME SUM player3(3.p3) | player1(1.p1) player2(2.p2) | player1(1.p1) player2(2.p2) | player3(3.p3) player3(3.p3) | player1(1.p1) | ## player2(2.p2) | player1(1.p1) | ## player2(2.p2) | player3(3.p3) | ## 0.06222 DONE PROCESSING sim`fflc p1 p2 p3 01:34 mm01: ~ # 01:34 mm01: ~ # [] 21 ASPL : bash

-F- Fig. 1.1.9 [Figure Simulation for Three Players Throwing Dice]

ASPL © 2024 by Bassem Jamaleddine

ASPL can also treats DNA sequences as datasets and you can toy with these sequences through its alignment algorithms. Figure FFFFF shows a mutant when altering the sequence randomly, and figure FFFFF show the DNA sequence alignment of two men.

13:1	1 mm0	1: ~	# m	utant.	aspl	man3	man3	@1 3											
matc seq1 seq2	COLOR hcolo color color color	r: :	< >	ON SCH 117 0 0 3	97.5 0.00 0.00 2.50	i0% % %	uence	simi	larit	y ali	gnmen	t ***							
AGC	GAA	GCT	ACC	TAC	TAA	ATC	тса	GAA	CAC	GAG	GTG	TAA	CAG	AGT	GGG	AAA	GGA	TCA	AGA
AGC	GAA	GCT	ACC	тсс	TAA	ATC	тса	GAA	CAC	GAG	GTG	TAA	CAG	AGT	GGG	AAA	GGA	TCA	AGA
CCG	TTG	ACT	CAC	GAT	ACA	TGG	AGC	TAC	ТАА	GGC	стт	CTG	CAT	AGG	CAA	CAT	GGC	АТС	ATA
CCG	TTG	ACT	CAC	GAT	ACA	TGG	AGC	TAC	ТАА	GGC	СТТ	CTG	CAT	AGG	CAA	CAT	GGC	ATC	ATG
TGT	CGA	CGA	AGA	CAC	CGT	CGG	ATT	GTG	GAA	тсс	AAG	GTA	GTA	ACG	TAA	ACT	AAG	GAT	TGT
TGT	CGA	CGA	AGA	CAC	CGT	CGG	ATT	GTG	GAA	тсс	AAG	GTA	GTA	ACG	TAA	ACT	AAG	GAT	TGT
ACC	CAG	ACT	TGG	GAT	ccc	AAT	ACG	GAT	CGG	ттт	GGG	ACA	GCA	TCG	CAG	TGA	TGC	CCG	GGA
ACC	CAG	ACT	TGG	GAT	ccc	AAT	ACG	GAC	CGG	ттт	GGG	ACA	GCA	TCG	CAG	TGA	TGC	CCG	GGA
CAT	стс	TGG	AGC	GTG	AGA	ACT	GTG	AAG	ATT	CCA	GGT	TCA	GTC	AAG	ACC	GAG	TAG	CCA	TGC
CAT	СТС	TGG	AGC	GTG	AGA	ACT	GTG	AAG	ATT	CCA	GGT	TCA	GTC	AAG	ACC	GAG	TAG	CCA	TGC
GGG	TTT	GAC	сст	CAA	GAT	CAT	ACG	CTG	ттт	GTA	ATA	GGA	GAT	стт	GCT	TGC	ттс	ACG	CGA
GGG	ттт	GAC	сст	CAA	GAT	CAT	ACG	CTG	ттт	GTA	ATA	GGA	GAT	стт	GCT	TGC	ттс	ACG	CGA
ACC GAA GCT ACC TAC TAA ATC TCA GAA CAC GAG GTG TAA CAG AGT GGG AAA GGA TCA AGA CCG TTG ACT CAC GAT ACA TGG AGC TAC TAA G GC GTT CTG CAT AGG CAA CAT GGC ATC ATA TGT CGA CGA AGA CAC CGT CGG ATT GTG GAA TCC AAG GTA ACT AAG GAT TGT A C CGA ACT TGG GAT CCC AAT ACG GAT CGG TTT GGG GAA GCA GCA GCA GTA TGC GAA ATCC TGG AGA CT GTG AGA ATT CCA GGT TCA GTC AAG ACC GAG TAA CCG GAT GGG GAC GAC GAG GAT GCC CGG GAA CCC TC TG AGC GTG GAG ATT CTA GGT TCA GTC AAG ACC GAG TAA CCG GAT GGG GTT GAC CCT CAA GAT CAT ACG CTG TTT GTG TAA CT AGG GAT CCT AGA GGT TCA GTC AAG ACC GAG TAA CCC GAG GTT GAC CCT CAA GAT CAT ACG CTG TTT GTG TAA CTA GAG ACC CCA GGT TCA GTC CAT AAG CAA TC CCA GAA CAC GAG GTG TAA CAGA AGT GGG GAG CAT CTA GG GAT CCT AGG CAA TCC TAG GC CAT CTT CTG CAT AGG CAA CCT GAG GTT GTG GAA GAC CAG TC GGA TCC AGA GTA CAT AGG GC CTT CTG CAT AGG CAA CAT GG GC CGG TTT GGG CAA GAA CCC GC GGA TT GTG GAA CCT GAG ACT CTA G GC TTC TG CAT AGG CAA CAT GG GAC CGG TTT GGA CCA CAG GAT CC AGG GAA TCC TAG GTA ACT AAG GAT TCT CA GGT TCA GTC AAG ACC GAG TAG CCG GTT GGG GAA CAC CGT CCG GAA CCC TGC CGG GAA CCC TGG CAT GTG GAA CAT TG GTA CAA GAC GAG TT CCA GGT TCA GTC AAG ACC GAG TAG CCA TGC GGG TTT GAC CCT CAA GAT CAT ACG CTG TTT GTA ATA GGA GAT CTT GC TTC ACG CGA WRITING DNAS TO FILE: /root/.aspl/tmp/foo GG FUNCTION TO SHOW DNA ALLGINMENT																			
	PROC	ESSIN	IG an	AlignD	naSeo	ı(v1.m	an 3, v	2.man	3@1,f	ragsi	ze, 3)		1-1-1	-1-1-	1				
	2 mm0		00					-,			-,-)								
<u>P</u>]]				root	bash							root : I	hash						

-F- Fig. 1.1.10 [Figure DNA Sequence for Mutant]

ASPL © 2024 by Bassem Jamaleddine

File Edit View Bookmarks Settings Help

Figure mutant.aspl-img.png

full view

mato seq1 seq2		COMP	ARISO 1 < 3	N SCH	aspl 11.6 2.91 21.3 85.4	/ seq 5% % 6%			larit.	y ali	gnmer	it ***							
GTG	GCC	TGG	GAG	ATC	ACA	ACT	GGA	AAG	CAA	TGT	GCG	GCG	GGC	TAC	ATC	AAA	ACT	GGG	ттс
	ATA		GCT	TAA		стс	ACG	CGC	GCG		CAT	CCA	TTG	ACA	GTG	CGT		TTG	AGG
GGC	стс	***	***	***	***	***	***	GGG	GCG	GCA	ATC	CAT		TGC	ACT	GGC	TTG	ACC	ттт
! атс	стс	> CTT	> CGT	> TTG	> TAA	> GTA	> GAC	! тст	! GAC	! CGA	! CAA	I ACA	CGC	I GCC	! ACA	! TAC	! GCT	I ATA	I AAA
GGC	***	***	***	TGT	CGT	***	сст	TGA	GGC	тст	GGT	AAG	TAA	сст	TGG	GAC	CGT	СТА	***
GGC	> CGT	> TAA	> TAT	! CAG	CGT	> TCC	! GAG	! ATT	! CGA	! ATA	GGT	! TGT	l GGT	! CGA	! GTG	! TGC	! GTA	СТА	> CCG
***	***	AGC	TAA	GAT	ATC	ATA	GCT	GAT	AAA	GGT	TAA	GCT	GCA	CGG	TCA	CAA	тст	ACA	AAA
> CTG	> CTG	l GGG	! TAG	! AGA	! GTA	! TAC	I TAC	! AGT	I AGC	! CTT	! TGC	! ACT	! AAG	! сст	! GTT	! TCC	! GAA	I CCA	AAA
***	***	ACC	стс	TCA	AAC	AGA	ACT	CAC	CCA	CAT	***		CAT		стс	TGC	TAA	AGA	CCG
> TTT	> AGG	l GGG	l GGG	I GGA	AAC	<	I CGA	I TGA	I ATT		>	I GAT	1	I CAG	l GGG	I GGC	I AGC	! TTA	CCG
	***	TCA	ATA	TGA	TGG	ATT	ATA	***	***	***	ACT	***	CAC	GAT	CGG	TAT	CCA	TTG	GTA
>	>	1	1	1	!	1		>	>	>		>	1	1		<	<	1	Ĩ.
TTG					ATG	TCC	ATA	TAC	CTG	GAC	ACT	AAC	CGT	TGT	CGG	***	***	CAT	GTC
TAT	GCC	TCC	ATG !	AAT !															
STC	CAG	GAC	GGG	GGG															
GCC CGT GA C GG CT TGG	TC CA - AGC TAT TCC A ATA T ATA T G GGG	T AAG CAT C TG AA TG AA AA GC A CGC TAG GGT C	TGC GAT A AC CT T T TAA GCC AGA G AG GG	ACT G TC AT C TGC GCG ACA T TA TA	GC TT TA GCT TAA CTC A TAC GC	G ACC GAT AGA C CG CG T ATA AGT	TTT AAA G CG C GCG AAA AGC C	GGC - GT TA ATT GGC C TT TO	A GCT TCA CAT C GT TA	GCA ATA T CA TT A TAT	TGT CGG T GA TG G ACA CAG CCT G	CGT - CA CA G ATT G TG CGT T CGT T TT TC	CC A TCT ATA CGT A CC GA	GC TT GC TT GC TT G ATT CCA	GGC AAA - G AGG CGA AAA T	TCT G - ACT GTC ATA G TT AG	GT AA - ACC CTC C GT TG G GGG	G TAA CTC CAC G TT CG T GGT GGG	CCT TGG GAC CGT CTA TCA AAC AGA ACT CAC CCA CA AT CGG TAT CCA TTG GTA TAT T TTG TAA GTA GAT CTG GTA CTG CGA GTG TGC GTA CTA CCG GGA AAC CGA TGA ATT CA GT CGG CAT GTC GTC
10	ITING	DNAs	TO F		/root IA ALI			/foo											
	FUNC																		
GG		ESSIN	G ggA	lignD	naSeq	(v1,m	an1, v	2, mar	12, fra	gsize	,3) -	1-	1-1-1	-1-1					

-F- Fig. 1.1.11 [Figure DNA Sequence of Two Men]

ASPL © 2024 by Bassem Jamaleddine

The elements of a group do not need to be the usual static data, as an element attributes can be renewed when hooked to processes or tied to devices in a system that may change states. We will see some examples in "ASPL by Examples" where the OSCILLATORGROUP defines attributes that are tied to a device to collect data set; and another example using the BAYLEVELGROUP

whose attributes are tied to sensors monitoring the water level between two bays. Figure FFFF shows a simulation when the water level between the two bays is critical.

BAYS12MON-img0.png

full view

File Edit Vie	w Bookmarks	Settings Hel	lp							
:56:29 root@	mm01 /root as	pl:6 > ks r	mean123 mtime aelm							
SPL:6> ks m .:56:29 root@	ean123 mtime a mm01 /root as	pl:6 > ks	s mean123 ntime ael	lm						
aStat - mo	an123 mtime ae	1.								
bStat = me	an123 mtime ae an123 mtime ae	lm								
			s= CRITICAL BAY1 BA	AY2						
SPL:7> f&`k .:56:36 root@	s= CRITICAL BA mm01 /root as	v1 BAV2 pl:7 > f8	&`ks= CRITICAL BAV1	1 BAY2						
*1	3 sets represe									
f&: f==)			CRITICAL BAY2 BAY1	(WATERIEVEL /	> / 1706770	555)				
f&=) f&=)	1706770555 me 1706770555 me	an123=above7 an123=above7	7feet mtime=2024-02 7feet mtime=2024-02	2-01 01:55:55 2-01 01:55:55	aelm=time(1 aelm=time(1	706770555)point 706770555)point)mean123(above7feet) .9)mean123(above7feet) .91)mean123(above7feet)	
CRITICAL BAY2 1 en BAY1 1 en	tries									
	SING f&`ks= CR	ITICAL BAY1	BAY2							
:56:48 root@	mm01 /root as	pl:8 > f&`ks	s= WARN BAY1 BAY2							
56:48 root@	s= WARN BAY1 B mm01 /root as	pl:8 >f8	&`ks= WARN BAY1 BAY	¥2						
There are	3 sets represe	nting: WARN	BAY2 BAY1							
* f&: f==)	EQUAL F) f	l'equal pL W	WARN BAY2 BAY1 (<wa< td=""><td>ATERLEVEL/> /</td><td>1706770521)</td><td></td><td></td><td></td><td></td><td></td></wa<>	ATERLEVEL/> /	1706770521)					
f&=) f&=)	1706770521 me 1706770521 me	an123=5-6fee an123=5-6fee	et mtime=2024-02-01 et mtime=2024-02-01 et mtime=2024-02-01	1 01:55:21 ael 1 01:55:21 ael	<pre>m=time(1706 m=time(1706)</pre>)point2(2)point .68)point2(8.4)	3(2)mean123(point3(2.83)	5-6feet) mean123(5-6feet)	
* f&: f==) f&=)	EQUAL F) f	l'equal pL W	ət mtime=2024-02-03 WARN BAY2 BAY1 (<wa ət mtime=2024-02-01</wa 	ATERLEVEL/> /	1706770543)					
	1706770543 me	an123=5-6fee	et mtime=2024-02-01 et mtime=2024-02-01 et mtime=2024-02-01	1 01:55:43 ael	<pre>m=time(1706)</pre>					
* 1&:1==) f&=)			WARN BAY2 BAY1 (<wa st mtime=2024-02-01 st mtime=2024-02-03</wa 							
f&=) f&=)	1706770569 me 1706770569 me	an123=5-6fee an123=5-6fee	et mtime=2024-02-01 et mtime=2024-02-01	1 01:56:09 ael 1 01:56:09 ael	m=time(1706) m=time(1706)	770569)point1(4 770569)point1(4	11)point2(7.6) 03)point2(7.96		mean123(5-6feet))mean123(5-6feet)	
WARN 3 en	trion									
BAY2 3 en BAY1 3 en	tries									
DONE PROCES	SING f&`ks= WA	RN BAY1 BAY	2							
:56:57 root@	mm01 /root as s= CRITICAL BA	pl:9 > f&`k:	s= CRITICAL BAY1							
:56:57 root@	s= CRITICAL BA mm01 /root as	pl:9 > f8	&`ks= CRITICAL BAY1	1						
There are	2 sets represe	nting: CRITI	ICAL BAY1							
* f&: f==)	EQUAL F) f	l'equal pL (CRITICAL BAY1 (<wat< td=""><td>TERLEVEL/> / 1</td><td>706770542)</td><td></td><td></td><td></td><td></td><td></td></wat<>	TERLEVEL/> / 1	706770542)					
f&=) f&=)	1706770542 me	an123=above7	7feet mtime=2024-02	2-01 01:55:42	aelm=time(1)		1(4.9)point2(9.))mean123(above7feet) 99)mean123(above7feet)	
* f&: f==) f&=) f&=)	1706770544 me	an123=above	7feet mtime=2024-02	2-01 01:55:44	aelm=time(1)	706770544)point	1(2.5)point2(2.))mean123(above7feet) .47)mean123(above7feet)	
f&=) * f&:f==)	1706770551 me EQUAL F) f	an123=above l'equal pL (7feet mtime=2024-02 CRITICAL BAY1 (<wat< td=""><td>2-01 01:55:51 TERLEVEL/> / 1</td><td>aelm=time(1 706770555)</td><td>706770551)point</td><td>1(2.75)point2(9</td><td>.05)point3(8</td><td>)mean123(above7feet) .61)mean123(above7feet))mean123(above7feet) .91)mean123(above7feet)</td><td></td></wat<>	2-01 01:55:51 TERLEVEL/> / 1	aelm=time(1 706770555)	706770551)point	1(2.75)point2(9	.05)point3(8)mean123(above7feet) .61)mean123(above7feet))mean123(above7feet) .91)mean123(above7feet)	
f&=) f&=)	1706770555 me 1706770555 me	an123=above an123=above	7feet mtime=2024-02 7feet mtime=2024-02	2-01 01:55:55 2-01 01:55:55	<pre>aelm=time(1 aelm=time(1)</pre>		1(2.5)point2(2.) 1(8.75)point2(4)mean123(above7feet) .91)mean123(above7feet)	
f&=)	1706770578 me	an123=abovel	7feet mtime=2024-02	2-01 01:56:18	aelm=time(1)					
+&=)	1706770578 me	an123=above	/feet mtime=2024-02	2-01 01:56:18	aeim=time(1				.98)mean123(above7feet)	
CRITICAL BAY1 5 en										
	SING f&`ks= CR	ITICAL BAY1								
:57:14 root@	mm01 /root as	pl:10 > f&`	s= CRITICAL BAY2							
SPL:10> f& :57:14 root@	ks= CRITICAL B mm01 /root as	pl:10 >	f&`ks= CRITICAL BAY	¥2						
There are	2 sets represe	nting: CRIII	ICAL BAY2							
* f&: f==)	EQUAL F) f	l'equal pL (CRITICAL BAY2 (<wat< td=""><td>TERLEVEL/> / 1</td><td>706770535)</td><td></td><td></td><td></td><td></td><td></td></wat<>	TERLEVEL/> / 1	706770535)					
f&=) f&=)							1(2.5)point2(2. 1(5.03)point2(8)mean123(above7feet) .3)mean123(above7feet)	
* 1&:1==) f&=)	1706770538 me	an123=abovel	7feet mtime=2024-02	2-01 01:55:38	aelm=time(1)					
f&=) f&:f==) f&=)	EQUAL F) f	l'equal pL (CRITICAL BAY2 (<wat< td=""><td>TERLEVEL/> / 1</td><td>706770549)</td><td></td><td></td><td></td><td>.11)mean123(above7feet)</td><td></td></wat<>	TERLEVEL/> / 1	706770549)				.11)mean123(above7feet)	
f&=)	1706770549 me	an123=above	7feet mtime=2024-02	2-01 01:55:49	aelm=time(1			.15)point3(8)mean123(above7feet) .13)mean123(above7feet)	
<u> </u>	root : aspl		root : aspl		root : aspl		ASPL : aspl		shared : bash	

-F- Fig. 1.1.12 [Figure Monitoring the Water Level Between Two Bays]

ASPL © 2024 by Bassem Jamaleddine

ASPL can do fuzzy set operations, these are simple operators like **y&**, **yU**, **and y**\ to get the fuzzy intersection, union, and difference respectively.

With its powerful regular expression processor, ASPL can do shallow set operations. Just type **shallowed** and you select the shallow matching that you desire.

A quick view of the shallow table module is shown below.

aspl:1 > shallowed

>

THE SHALLOW MATCHING IDENTIFIER TO SELECT THE ROUTINE WHEN SHALLOW SETOPS ARE USED:

	IDENTIFIER	DESCRIPTION
	nothing	matching nothing at all
	starstar	matching anything and everything
	matchandmatch	matching the ./subgroups and the element
	matchormatch	matching the ./subgroups or the element
	elem	matching just the element and ignoring ./subgroups
	stem	matching just the ./subgroups and ignoring the element
	endjoinedeither	matching from end of ./subgroups/element for either
	begjoinedeither	matching the beginning of ./subgroups/element for either
	endstem	matching just the ./subgroups from the end and ignoring the element
	endstemeither	matching just the ./subgroups from the end and ignoring the element (for either)
	begstem	matching from beginning of ./subgroups while ignoring the element
	begstemeither	matching from beginning of ./subgroups while ignoring the element (for either)
	piecedstem	matching at least one piece in ./subgroups while ignoring the element
>	piecedstemelem	matching the element and at least one piece in the ./subgroups
	begelem	matching from the beginning of element and ignoring ./subgroups (for either)
	endelem	matching from the end of element and ignoring ./subgroups (for either)
	rgxelem	matching the element anywhere and ignoring ./subgroups (for either)
	prcrelem	apply processor when matching the element anywhere and ignoring ./subgroups (for ei

WHEN SELECTING prcrelem AS THE SHALLOW MATCHING IDENTIFIER, ONE OF THE FOLLOWING NODE PROCESSOR IDENTIFIER CAN BE SELECTED:

IDENTIFIER EVAL DESCRIPTION transac 1 capture the element where word Transaction occured, ignore case cla2ja 1 substitute .class with .java ja2cla 1 substitute .java with .class uc 1 upper case lc 1 lower case asis 1 neutral without any change

CURRENTLY LOADED PROCESSOR asis

>

THE shallowedMatches PACKAGE CAN BE EDITED TO ADD MORE MATCHING SUBROUTINES. SEE ASPL CONFIGURATION FILES FOR MORE ABOUT EDITING shallowedMatches PACKAGE.

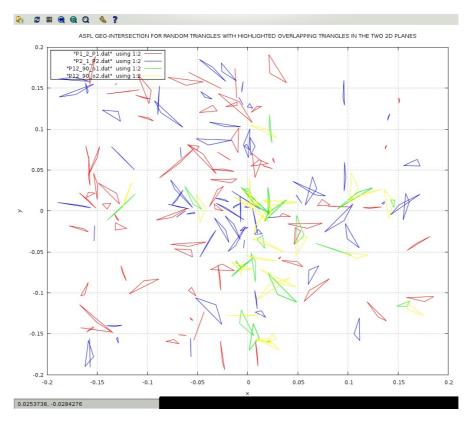
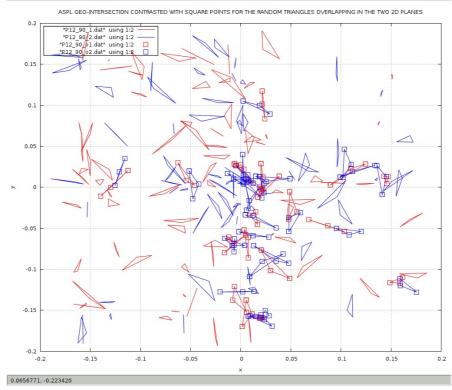

Moreover ASPL can switch its set operation mode to do geometric set operations so that you can detect intersecting polygons in 2D planes or on spheres.

Figure FFFFF shows the intersecting polygons in two planes. The intersecting polygons are contrasted by showing their vertex in squares.

P12_90-both-and-intersect-img2.png

Figure P12_90-both-and-intersect-img2.png

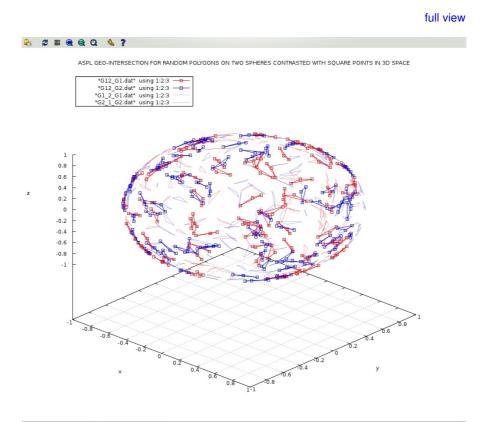
full view


ASPL © 2024 by Bassem Jamaleddine

P12_90-both-and-intersect-img1.png

PUBLISHER VERSION USING SQUARE POINTS FOR BLACK AND WHITE PRINT

Figure P12_90-both-and-intersect-img1.png


-F- Fig. 1.1.14 [Figure ASPL GEO-INTERSECTION CONTRASTED WITH SQUARE POINTS FOR THE RANDOM TRIANGLES OVERLAPPING IN THE TWO 2D PLANES]

ASPL © 2024 by Bassem Jamaleddine

Figure FFFFF shows the intersecting polygons on two spheres, and figure FFFF shows the intersects and differences between these polygons.

G12_170-all-with-intersect-img3D.png

Figure G12_170-all-with-intersect-img3D.png

view: 59.0000, 43.0000 scale: 1.00000, 1.00000

-F- Fig. 1.1.15 [Figure RANDOM POLYGONS OVERLAPPING ON TWO SPHERES IN 3D SPACE]

ASPL © 2024 by Bassem Jamaleddine

Refer to WARN: IN Introduction-to-ASPL.raw THE FOLLOWING Ref: CANNOT BE RESOLVED <Ref:-see section -chaptit "RANDOM POLYGONS ON THREE SPHERES" -ptt "RANDOM POLYGONS ON THREE SPHERES" />

G12_170-both-all-img3D.png

Figure G12_170-both-all-img3D.png

🐴 🗶 🎟 🤤 🔍 🔌 ? RANDOM POLYGONS OVERLAPPING ON TWO SPHERES IN 3D SPACE WITH ASPL GEO-INTERSECTIONS GEO-DIFFERENCE "G12_170_1.dat" using 1:2:3 "G12_170_2.dat" using 1:2:3 "G12_170_o1.dat" using 1:2:3 "G12_170_o2.dat" using 1:2:3 "G2_1_G2.dat" using 1:2:3 "G1_2_G1.dat" using 1:2:3 1 0.8 0.6 0.4 0.2 C -0.2 -0.4 -0.6 -0.8 -1 สว .0.8 -0.6 00

view: 60.0000, 30.0000 scale: 1.00000, 1.00000

-F- Fig. 1.1.16 [Figure RANDOM POLYGONS OVERLAPPING ON TWO SPHERES IN 3D SPACE WITH ASPL GEO-INTERSECTIONS GEO-DIFFERENCE]

ASPL © 2024 by Bassem Jamaleddine

Many of these examples are detailed in WARN: IN Introduction-to-ASPL.raw THE FOLLOWING Ref: CANNOT BE RESOLVED <Ref:-see section -chaptit "ASPL by Examples" -ptt "ASPL by Examples" />

Chapter Ref: ASPL by Examples

In addition the interpreter offers *the ASPL scripting language* so that you can enhance your system with powerful commands. Consider the following script that shows the differences in JAR archives. It can be called with a simple command **jarcompare.aspl jarfile1 jarfile2**.

[Top Text]

LISTING jarcompare.aspl ASPL Script jarcompare.aspl

(raw text)

```
#!/usr/bin/env aspl
1.
2.
      #ENVARG= -groupingclass POSIX -wsname TRANSIENT -singlepass
3.
      4.
5.
          jarcompare.aspl
      ;;
6.
          Compare two JAR archives
      ;;
7.
      ;;
          Copyright © 2024 Bassem W. Jamaleddine
8.
      ;;
      9.
10.
11.
      endScriptIfShellArgsLessThan 2
12.
13.
      ;;DEF FN cmp2sets := {gU {g\, %%1 %%2}{g\, %%2 %%1}{g&, %%1 %%2}}
14.
15.
      timeout 60
16.
      displayoff
17.
      d1 = ggjar(jarfile,$1,calchksum,1,calentropy,1)
18.
      d2 = ggjar(jarfile,$2,calchksum,1,calentropy,1)
19.
20.
      displayon
21.
      ks chksum size ffl
```

```
22.
     ;;print # SHOWING SET COMPARISONS BETWEEN $1 and $2
23.
24
     25.
     ;;FN cmp2sets(d1,d2)
26.
     print # SHOWING SET INTERSECTION WITH DIFFERENT CHECKSUMS BETWEEN $1 and $2
27.
     28.
29.
     f&`c~ d1 d2
     30.
     print # SHOWING SET SIMILARITY BETWEEN $1 and $2
31.
     32.
33.
     sim d1 d2
34.
     println
35.
36.
     endscript
37.
     __END
38.
39.
40.
      $00 compares two JAR archives
41.
42.
      $00 must be followed by the names of two JAR archives
43.
44.
      Example:
45.
       To compare the two JAR archives /tmp/TX/27238-tx.jar and
    /tmp/TX/38141-tx.jar
46.
       $00 /tmp/TX/27238-tx.jar /tmp/TX/38141-tx.jar
47.
```

ASPL © 2024 by Bassem Jamaleddine

Figure FFFFF shows the result of jarcompare.aspl when comparing two JAR achives. Notice how the colliding names of the classes have been detected and their different checksums is displayed in red color.

Figure jarcompare.aspl-img.png

full view

-F- Fig. 1.1.17 [Figure Comparing Two JAR Archives]

ASPL © 2024 by Bassem Jamaleddine

Naturally the ASPL interpreter allows you to do set operation interactively at its prompt and the user can repeat the same operations shown in the script at the ASPL prompt. Writing scripts with ASPL is simple as you will see in Chapter "ASPL Scripts".

ASPL uses the notion of grouping class and treats algebraic groups per their meta data. The grouping class specially characterizes the set of data being treated.

ASPL Elements Class Containment is discussed in Chapter "ASPL A DETAILED VIEW".

ASPL is premier set calculator uniquely identified with its powerful programming of set elements and their attributes: ASPL element attributes can be statically defined, or dynamically updatable by anonymous subroutines, or refreshable with new data when tied to generative devices. When a change is detected in an element, ASPL archives the variable, and you can use set operators to display what has changed.